Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157201667> ?p ?o ?g. }
- W2157201667 endingPage "95" @default.
- W2157201667 startingPage "81" @default.
- W2157201667 abstract "The potential for climate change mitigation by bioenergy crops and terrestrial carbon sinks has been the object of intensive research in the past decade. There has been much debate about whether energy crops used to offset fossil fuel use, or carbon sequestration in forests, would provide the best climate mitigation benefit. Most current food cropland is unlikely to be used for bioenergy, but in many regions of the world, a proportion of cropland is being abandoned, particularly marginal croplands, and some of this land is now being used for bioenergy. In this study, we assess the consequences of land-use change on cropland. We first identify areas where cropland is so productive that it may never be converted and assess the potential of the remaining cropland to mitigate climate change by identifying which alternative land use provides the best climate benefit: C4 grass bioenergy crops, coppiced woody energy crops or allowing forest regrowth to create a carbon sink. We do not present this as a scenario of land-use change – we simply assess the best option in any given global location should a land-use change occur. To do this, we use global biomass potential studies based on food crop productivity, forest inventory data and dynamic global vegetation models to provide, for the first time, a global comparison of the climate change implications of either deploying bioenergy crops or allowing forest regeneration on current crop land, over a period of 20 years starting in the nominal year of 2000 ad. Globally, the extent of cropland on which conversion to energy crops or forest would result in a net carbon loss, and therefore likely always to remain as cropland, was estimated to be about 420.1 Mha, or 35.6% of the total cropland in Africa, 40.3% in Asia and Russia Federation, 30.8% in Europe-25, 48.4% in North America, 13.7% in South America and 58.5% in Oceania. Fast growing C4 grasses such as Miscanthus and switch-grass cultivars are the bioenergy feedstock with the highest climate mitigation potential. Fast growing C4 grasses such as Miscanthus and switch-grass cultivars provide the best climate mitigation option on ≈485 Mha of cropland worldwide with ~42% of this land characterized by a terrain slope equal or above 20%. If that land-use change did occur, it would displace ≈58.1 Pg fossil fuel C equivalent (Ceq oil). Woody energy crops such as poplar, willow and Eucalyptus species would be the best option on only 2.4% (≈26.3 Mha) of current cropland, and if this land-use change occurred, it would displace ≈0.9 Pg Ceq oil. Allowing cropland to revert to forest would be the best climate mitigation option on ≈17% of current cropland (≈184.5 Mha), and if this land-use change occurred, it would sequester ≈5.8 Pg C in biomass in the 20-year-old forest and ≈2.7 Pg C in soil. This study is spatially explicit, so also serves to identify the regional differences in the efficacy of different climate mitigation options, informing policymakers developing regionally or nationally appropriate mitigation actions." @default.
- W2157201667 created "2016-06-24" @default.
- W2157201667 creator A5013071287 @default.
- W2157201667 creator A5028843362 @default.
- W2157201667 creator A5036991958 @default.
- W2157201667 creator A5049070638 @default.
- W2157201667 creator A5055937987 @default.
- W2157201667 creator A5065467022 @default.
- W2157201667 creator A5065711020 @default.
- W2157201667 date "2015-02-06" @default.
- W2157201667 modified "2023-09-27" @default.
- W2157201667 title "Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment" @default.
- W2157201667 cites W145920869 @default.
- W2157201667 cites W1551973549 @default.
- W2157201667 cites W1885078460 @default.
- W2157201667 cites W1895644606 @default.
- W2157201667 cites W1975625726 @default.
- W2157201667 cites W1980240827 @default.
- W2157201667 cites W1981827347 @default.
- W2157201667 cites W1994047119 @default.
- W2157201667 cites W1995647569 @default.
- W2157201667 cites W1996658678 @default.
- W2157201667 cites W1998441542 @default.
- W2157201667 cites W2011806670 @default.
- W2157201667 cites W2012318172 @default.
- W2157201667 cites W2015902448 @default.
- W2157201667 cites W2015913637 @default.
- W2157201667 cites W2017270512 @default.
- W2157201667 cites W2017385241 @default.
- W2157201667 cites W2018071843 @default.
- W2157201667 cites W2027580127 @default.
- W2157201667 cites W2034879931 @default.
- W2157201667 cites W2036760816 @default.
- W2157201667 cites W2042907990 @default.
- W2157201667 cites W2049070397 @default.
- W2157201667 cites W2052225913 @default.
- W2157201667 cites W2054804823 @default.
- W2157201667 cites W2055609899 @default.
- W2157201667 cites W2060766617 @default.
- W2157201667 cites W2060991846 @default.
- W2157201667 cites W2063514988 @default.
- W2157201667 cites W2070510804 @default.
- W2157201667 cites W2073568384 @default.
- W2157201667 cites W2084902627 @default.
- W2157201667 cites W2093540905 @default.
- W2157201667 cites W2096529546 @default.
- W2157201667 cites W2099083250 @default.
- W2157201667 cites W2105808960 @default.
- W2157201667 cites W2108744281 @default.
- W2157201667 cites W2109631166 @default.
- W2157201667 cites W2111459854 @default.
- W2157201667 cites W2112274053 @default.
- W2157201667 cites W2114646188 @default.
- W2157201667 cites W2117889674 @default.
- W2157201667 cites W2119855777 @default.
- W2157201667 cites W2122210246 @default.
- W2157201667 cites W2126902408 @default.
- W2157201667 cites W2129920251 @default.
- W2157201667 cites W2130108233 @default.
- W2157201667 cites W2130365445 @default.
- W2157201667 cites W2132224397 @default.
- W2157201667 cites W2132884870 @default.
- W2157201667 cites W2133488074 @default.
- W2157201667 cites W2134289299 @default.
- W2157201667 cites W2136596893 @default.
- W2157201667 cites W2137052367 @default.
- W2157201667 cites W2141709448 @default.
- W2157201667 cites W2142231247 @default.
- W2157201667 cites W2145814228 @default.
- W2157201667 cites W2147319862 @default.
- W2157201667 cites W2150833034 @default.
- W2157201667 cites W2160320155 @default.
- W2157201667 cites W2162197976 @default.
- W2157201667 cites W2163883216 @default.
- W2157201667 cites W2169103225 @default.
- W2157201667 cites W2169148921 @default.
- W2157201667 cites W2169497991 @default.
- W2157201667 cites W2172035697 @default.
- W2157201667 cites W2235201318 @default.
- W2157201667 doi "https://doi.org/10.1111/gcbb.12242" @default.
- W2157201667 hasPublicationYear "2015" @default.
- W2157201667 type Work @default.
- W2157201667 sameAs 2157201667 @default.
- W2157201667 citedByCount "38" @default.
- W2157201667 countsByYear W21572016672016 @default.
- W2157201667 countsByYear W21572016672017 @default.
- W2157201667 countsByYear W21572016672018 @default.
- W2157201667 countsByYear W21572016672019 @default.
- W2157201667 countsByYear W21572016672020 @default.
- W2157201667 countsByYear W21572016672021 @default.
- W2157201667 countsByYear W21572016672022 @default.
- W2157201667 countsByYear W21572016672023 @default.
- W2157201667 crossrefType "journal-article" @default.
- W2157201667 hasAuthorship W2157201667A5013071287 @default.
- W2157201667 hasAuthorship W2157201667A5028843362 @default.
- W2157201667 hasAuthorship W2157201667A5036991958 @default.
- W2157201667 hasAuthorship W2157201667A5049070638 @default.
- W2157201667 hasAuthorship W2157201667A5055937987 @default.