Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157281098> ?p ?o ?g. }
- W2157281098 endingPage "281" @default.
- W2157281098 startingPage "245" @default.
- W2157281098 abstract "Life insurers, pension funds, health care providers and social security institutions face increasing expenses due to continuing improvements of mortality rates. The actuarial and demographic literature has introduced a myriad of (deterministic and stochastic) models to forecast mortality rates of single populations. This paper presents a Bayesian analysis of two related multi-population mortality models of log-bilinear type, designed for two or more populations. Using a larger set of data, multi-population mortality models allow joint modelling and projection of mortality rates by identifying characteristics shared by all sub-populations as well as sub-population specific effects on mortality. This is important when modeling and forecasting mortality of males and females, regions within a country and when dealing with index-based longevity hedges. Our first model is inspired by the two factor Lee–Carter model of Renshaw and Haberman (Insur Math Eco 33(2):255–272, 2003) and the common factor model of Carter and Lee (Int J forecast 8:393–411, 1992. The second model is the augmented common factor model of Li and Lee (Demography 42(3):575–594, 2005). This paper approaches both models in a statistical way, using a Poisson distribution for the number of deaths at a certain age and in a certain time period. Moreover, we use Bayesian statistics to calibrate the models and to produce mortality forecasts. We develop the technicalities necessary for Markov Chain Monte Carlo ([MCMC]) simulations and provide software implementation (in R) for the models discussed in the paper. Key benefits of this approach are multiple. We jointly calibrate the Poisson likelihood for the number of deaths and the times series models imposed on the time dependent parameters, we enable full allowance for parameter uncertainty and we are able to handle missing data as well as small sample populations. We compare and contrast results from both models to the results obtained with a frequentist single population approach and a least squares estimation of the augmented common factor model." @default.
- W2157281098 created "2016-06-24" @default.
- W2157281098 creator A5001931961 @default.
- W2157281098 creator A5032178684 @default.
- W2157281098 creator A5091008315 @default.
- W2157281098 date "2015-09-19" @default.
- W2157281098 modified "2023-09-27" @default.
- W2157281098 title "Bayesian Poisson log-bilinear models for mortality projections with multiple populations" @default.
- W2157281098 cites W143236119 @default.
- W2157281098 cites W1539798016 @default.
- W2157281098 cites W1981446795 @default.
- W2157281098 cites W1983794799 @default.
- W2157281098 cites W1985805839 @default.
- W2157281098 cites W2024136671 @default.
- W2157281098 cites W2034529639 @default.
- W2157281098 cites W2049781056 @default.
- W2157281098 cites W2052350044 @default.
- W2157281098 cites W2057268325 @default.
- W2157281098 cites W2061031084 @default.
- W2157281098 cites W2065877807 @default.
- W2157281098 cites W2067633625 @default.
- W2157281098 cites W2072258082 @default.
- W2157281098 cites W2077269078 @default.
- W2157281098 cites W2078355488 @default.
- W2157281098 cites W2080490750 @default.
- W2157281098 cites W2099253873 @default.
- W2157281098 cites W2101518413 @default.
- W2157281098 cites W2109692581 @default.
- W2157281098 cites W2109915710 @default.
- W2157281098 cites W2120297822 @default.
- W2157281098 cites W2126771422 @default.
- W2157281098 cites W2143766076 @default.
- W2157281098 cites W2154737502 @default.
- W2157281098 cites W2158353723 @default.
- W2157281098 cites W2158712340 @default.
- W2157281098 cites W3104683063 @default.
- W2157281098 cites W3121171014 @default.
- W2157281098 cites W3125590267 @default.
- W2157281098 cites W4232161299 @default.
- W2157281098 cites W4248681815 @default.
- W2157281098 cites W4296396156 @default.
- W2157281098 doi "https://doi.org/10.1007/s13385-015-0115-6" @default.
- W2157281098 hasPublicationYear "2015" @default.
- W2157281098 type Work @default.
- W2157281098 sameAs 2157281098 @default.
- W2157281098 citedByCount "35" @default.
- W2157281098 countsByYear W21572810982017 @default.
- W2157281098 countsByYear W21572810982018 @default.
- W2157281098 countsByYear W21572810982019 @default.
- W2157281098 countsByYear W21572810982020 @default.
- W2157281098 countsByYear W21572810982021 @default.
- W2157281098 countsByYear W21572810982022 @default.
- W2157281098 countsByYear W21572810982023 @default.
- W2157281098 crossrefType "journal-article" @default.
- W2157281098 hasAuthorship W2157281098A5001931961 @default.
- W2157281098 hasAuthorship W2157281098A5032178684 @default.
- W2157281098 hasAuthorship W2157281098A5091008315 @default.
- W2157281098 hasBestOaLocation W21572810982 @default.
- W2157281098 hasConcept C100906024 @default.
- W2157281098 hasConcept C10138342 @default.
- W2157281098 hasConcept C105795698 @default.
- W2157281098 hasConcept C107673813 @default.
- W2157281098 hasConcept C111350023 @default.
- W2157281098 hasConcept C144024400 @default.
- W2157281098 hasConcept C149782125 @default.
- W2157281098 hasConcept C149923435 @default.
- W2157281098 hasConcept C162118730 @default.
- W2157281098 hasConcept C162324750 @default.
- W2157281098 hasConcept C179755657 @default.
- W2157281098 hasConcept C2780899237 @default.
- W2157281098 hasConcept C2781386606 @default.
- W2157281098 hasConcept C2908647359 @default.
- W2157281098 hasConcept C33923547 @default.
- W2157281098 hasConcept C73269764 @default.
- W2157281098 hasConceptScore W2157281098C100906024 @default.
- W2157281098 hasConceptScore W2157281098C10138342 @default.
- W2157281098 hasConceptScore W2157281098C105795698 @default.
- W2157281098 hasConceptScore W2157281098C107673813 @default.
- W2157281098 hasConceptScore W2157281098C111350023 @default.
- W2157281098 hasConceptScore W2157281098C144024400 @default.
- W2157281098 hasConceptScore W2157281098C149782125 @default.
- W2157281098 hasConceptScore W2157281098C149923435 @default.
- W2157281098 hasConceptScore W2157281098C162118730 @default.
- W2157281098 hasConceptScore W2157281098C162324750 @default.
- W2157281098 hasConceptScore W2157281098C179755657 @default.
- W2157281098 hasConceptScore W2157281098C2780899237 @default.
- W2157281098 hasConceptScore W2157281098C2781386606 @default.
- W2157281098 hasConceptScore W2157281098C2908647359 @default.
- W2157281098 hasConceptScore W2157281098C33923547 @default.
- W2157281098 hasConceptScore W2157281098C73269764 @default.
- W2157281098 hasIssue "2" @default.
- W2157281098 hasLocation W21572810981 @default.
- W2157281098 hasLocation W21572810982 @default.
- W2157281098 hasLocation W21572810983 @default.
- W2157281098 hasLocation W21572810984 @default.
- W2157281098 hasOpenAccess W2157281098 @default.
- W2157281098 hasPrimaryLocation W21572810981 @default.
- W2157281098 hasRelatedWork W1522071689 @default.