Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157333417> ?p ?o ?g. }
- W2157333417 abstract "Abstract Micro-computed tomography (μCT) obtained by synchrotron radiation (SR) enables magnified images with a high space resolution that might be used as a non-invasive and non-destructive technique for the quantitative analysis of medical images, in particular the histomorphometry (HMM) of bony mass. In the preprocessing of such images, conventional operations such as binarization and morphological filtering are used before calculating the stereological parameters related, for example, to the trabecular bone microarchitecture. However, there is no standardization of methods for HMM based on μCT images, especially the ones obtained with SR X-ray. Notwithstanding the several uses of artificial neural networks (ANNs) in medical imaging, their application to the HMM of SR-μCT medical images is still incipient, despite the potential of both techniques. The contribution of this paper is the assessment and comparison of well-known training algorithms as well as the proposal of training strategies (combinations of training algorithms, sub-image kernel and symmetry information) for feed-forward ANNs in the task of bone pixels recognition in SR-μCT medical images. For a quantitative comparison, the results of a cross validation and a statistical analysis of the results for 36 training strategies are presented. The ANNs demonstrated both very low mean square errors in the validation, and good quality segmentation of the image of interest for application to HMM in SR-μCT medical images." @default.
- W2157333417 created "2016-06-24" @default.
- W2157333417 creator A5012145618 @default.
- W2157333417 creator A5041042079 @default.
- W2157333417 creator A5046779719 @default.
- W2157333417 creator A5058862171 @default.
- W2157333417 creator A5063798800 @default.
- W2157333417 creator A5065612769 @default.
- W2157333417 creator A5081322018 @default.
- W2157333417 creator A5089476159 @default.
- W2157333417 date "2010-09-01" @default.
- W2157333417 modified "2023-10-01" @default.
- W2157333417 title "Assessment of neural networks training strategies for histomorphometric analysis of synchrotron radiation medical images" @default.
- W2157333417 cites W1498436455 @default.
- W2157333417 cites W1963639069 @default.
- W2157333417 cites W1974395735 @default.
- W2157333417 cites W1980178339 @default.
- W2157333417 cites W1994869005 @default.
- W2157333417 cites W1997419076 @default.
- W2157333417 cites W2006689445 @default.
- W2157333417 cites W2022167593 @default.
- W2157333417 cites W2023251715 @default.
- W2157333417 cites W2040952265 @default.
- W2157333417 cites W2057150999 @default.
- W2157333417 cites W2063344799 @default.
- W2157333417 cites W2079147312 @default.
- W2157333417 cites W2083146528 @default.
- W2157333417 cites W2087378917 @default.
- W2157333417 cites W2100515332 @default.
- W2157333417 cites W2116190564 @default.
- W2157333417 cites W2119495920 @default.
- W2157333417 cites W2123169298 @default.
- W2157333417 cites W2159591750 @default.
- W2157333417 cites W2160620162 @default.
- W2157333417 cites W2161663128 @default.
- W2157333417 doi "https://doi.org/10.1016/j.nima.2010.05.022" @default.
- W2157333417 hasPublicationYear "2010" @default.
- W2157333417 type Work @default.
- W2157333417 sameAs 2157333417 @default.
- W2157333417 citedByCount "8" @default.
- W2157333417 countsByYear W21573334172012 @default.
- W2157333417 countsByYear W21573334172014 @default.
- W2157333417 countsByYear W21573334172018 @default.
- W2157333417 countsByYear W21573334172022 @default.
- W2157333417 crossrefType "journal-article" @default.
- W2157333417 hasAuthorship W2157333417A5012145618 @default.
- W2157333417 hasAuthorship W2157333417A5041042079 @default.
- W2157333417 hasAuthorship W2157333417A5046779719 @default.
- W2157333417 hasAuthorship W2157333417A5058862171 @default.
- W2157333417 hasAuthorship W2157333417A5063798800 @default.
- W2157333417 hasAuthorship W2157333417A5065612769 @default.
- W2157333417 hasAuthorship W2157333417A5081322018 @default.
- W2157333417 hasAuthorship W2157333417A5089476159 @default.
- W2157333417 hasBestOaLocation W21573334171 @default.
- W2157333417 hasConcept C114614502 @default.
- W2157333417 hasConcept C153180895 @default.
- W2157333417 hasConcept C154945302 @default.
- W2157333417 hasConcept C160633673 @default.
- W2157333417 hasConcept C31601959 @default.
- W2157333417 hasConcept C31972630 @default.
- W2157333417 hasConcept C33923547 @default.
- W2157333417 hasConcept C34736171 @default.
- W2157333417 hasConcept C41008148 @default.
- W2157333417 hasConcept C50644808 @default.
- W2157333417 hasConcept C74193536 @default.
- W2157333417 hasConcept C89600930 @default.
- W2157333417 hasConceptScore W2157333417C114614502 @default.
- W2157333417 hasConceptScore W2157333417C153180895 @default.
- W2157333417 hasConceptScore W2157333417C154945302 @default.
- W2157333417 hasConceptScore W2157333417C160633673 @default.
- W2157333417 hasConceptScore W2157333417C31601959 @default.
- W2157333417 hasConceptScore W2157333417C31972630 @default.
- W2157333417 hasConceptScore W2157333417C33923547 @default.
- W2157333417 hasConceptScore W2157333417C34736171 @default.
- W2157333417 hasConceptScore W2157333417C41008148 @default.
- W2157333417 hasConceptScore W2157333417C50644808 @default.
- W2157333417 hasConceptScore W2157333417C74193536 @default.
- W2157333417 hasConceptScore W2157333417C89600930 @default.
- W2157333417 hasLocation W21573334171 @default.
- W2157333417 hasOpenAccess W2157333417 @default.
- W2157333417 hasPrimaryLocation W21573334171 @default.
- W2157333417 hasRelatedWork W1794468867 @default.
- W2157333417 hasRelatedWork W1963639069 @default.
- W2157333417 hasRelatedWork W2103332122 @default.
- W2157333417 hasRelatedWork W2106321956 @default.
- W2157333417 hasRelatedWork W2117695123 @default.
- W2157333417 hasRelatedWork W2126569316 @default.
- W2157333417 hasRelatedWork W2127918794 @default.
- W2157333417 hasRelatedWork W2147364566 @default.
- W2157333417 hasRelatedWork W2186737408 @default.
- W2157333417 hasRelatedWork W2286967872 @default.
- W2157333417 hasRelatedWork W2539480240 @default.
- W2157333417 hasRelatedWork W2561875749 @default.
- W2157333417 hasRelatedWork W2583599830 @default.
- W2157333417 hasRelatedWork W2626038515 @default.
- W2157333417 hasRelatedWork W2898930977 @default.
- W2157333417 hasRelatedWork W2947966478 @default.
- W2157333417 hasRelatedWork W3000078381 @default.
- W2157333417 hasRelatedWork W3157139923 @default.
- W2157333417 hasRelatedWork W3193926890 @default.