Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157532148> ?p ?o ?g. }
- W2157532148 endingPage "1150006" @default.
- W2157532148 startingPage "1150006" @default.
- W2157532148 abstract "In array processing, a common problem is to estimate the angles of arrival of K deterministic sources impinging on an array of M antennas, from N observations of the source signal, corrupted by Gaussian noise. In the so-called subspace methods, the problem reduces to estimate a quadratic form (called localization function) of a certain projection matrix related to the source signal empirical covariance matrix. The estimates of the angles of arrival are then obtained by taking the K deepest local minima of the estimated localization function. Recently, a new subspace estimation method has been proposed, in the context where the number of available samples N is of the same order of magnitude than the number of sensors M. In this context, the traditional subspace methods tend to fail because they are based on the empirical covariance matrix of the observations which is a poor estimate of the source signal covariance matrix. The new subspace method is based on a consistent estimator of the localization function in the regime where M and N tend to +∞ at the same rate. However, the consistency of the angles estimator was not addressed, and the purpose of this paper is to prove this consistency in the previous asymptotic regime. For this, we prove the property that the singular values of M × N Gaussian information plus noise matrix escape from certain intervals is an event of probability decreasing at rate [Formula: see text] for all p. A regularization trick is also introduced, which allows to confine these singular values into certain intervals and to use standard tools as Poincaré inequality to characterize any moments of the estimator. These results are believed to be of independent interest." @default.
- W2157532148 created "2016-06-24" @default.
- W2157532148 creator A5051184610 @default.
- W2157532148 creator A5052471480 @default.
- W2157532148 creator A5074131422 @default.
- W2157532148 creator A5081462645 @default.
- W2157532148 creator A5085560572 @default.
- W2157532148 date "2012-04-01" @default.
- W2157532148 modified "2023-10-09" @default.
- W2157532148 title "LARGE INFORMATION PLUS NOISE RANDOM MATRIX MODELS AND CONSISTENT SUBSPACE ESTIMATION IN LARGE SENSOR NETWORKS" @default.
- W2157532148 cites W1577111082 @default.
- W2157532148 cites W1580589996 @default.
- W2157532148 cites W1971210014 @default.
- W2157532148 cites W1974637548 @default.
- W2157532148 cites W2035501532 @default.
- W2157532148 cites W2050874510 @default.
- W2157532148 cites W2062325233 @default.
- W2157532148 cites W2095004008 @default.
- W2157532148 cites W2109213734 @default.
- W2157532148 cites W2130693290 @default.
- W2157532148 cites W2137924030 @default.
- W2157532148 cites W2149755721 @default.
- W2157532148 cites W2319003341 @default.
- W2157532148 cites W3103692684 @default.
- W2157532148 doi "https://doi.org/10.1142/s2010326311500067" @default.
- W2157532148 hasPublicationYear "2012" @default.
- W2157532148 type Work @default.
- W2157532148 sameAs 2157532148 @default.
- W2157532148 citedByCount "38" @default.
- W2157532148 countsByYear W21575321482012 @default.
- W2157532148 countsByYear W21575321482013 @default.
- W2157532148 countsByYear W21575321482014 @default.
- W2157532148 countsByYear W21575321482015 @default.
- W2157532148 countsByYear W21575321482016 @default.
- W2157532148 countsByYear W21575321482017 @default.
- W2157532148 countsByYear W21575321482018 @default.
- W2157532148 countsByYear W21575321482019 @default.
- W2157532148 countsByYear W21575321482020 @default.
- W2157532148 countsByYear W21575321482021 @default.
- W2157532148 countsByYear W21575321482022 @default.
- W2157532148 crossrefType "journal-article" @default.
- W2157532148 hasAuthorship W2157532148A5051184610 @default.
- W2157532148 hasAuthorship W2157532148A5052471480 @default.
- W2157532148 hasAuthorship W2157532148A5074131422 @default.
- W2157532148 hasAuthorship W2157532148A5081462645 @default.
- W2157532148 hasAuthorship W2157532148A5085560572 @default.
- W2157532148 hasBestOaLocation W21575321484 @default.
- W2157532148 hasConcept C104267543 @default.
- W2157532148 hasConcept C105795698 @default.
- W2157532148 hasConcept C106487976 @default.
- W2157532148 hasConcept C11413529 @default.
- W2157532148 hasConcept C115961682 @default.
- W2157532148 hasConcept C134306372 @default.
- W2157532148 hasConcept C137250428 @default.
- W2157532148 hasConcept C151730666 @default.
- W2157532148 hasConcept C154945302 @default.
- W2157532148 hasConcept C159985019 @default.
- W2157532148 hasConcept C185142706 @default.
- W2157532148 hasConcept C185429906 @default.
- W2157532148 hasConcept C186633575 @default.
- W2157532148 hasConcept C192562407 @default.
- W2157532148 hasConcept C2777121530 @default.
- W2157532148 hasConcept C2778545087 @default.
- W2157532148 hasConcept C2779343474 @default.
- W2157532148 hasConcept C28826006 @default.
- W2157532148 hasConcept C31388003 @default.
- W2157532148 hasConcept C32834561 @default.
- W2157532148 hasConcept C33923547 @default.
- W2157532148 hasConcept C41008148 @default.
- W2157532148 hasConcept C4199805 @default.
- W2157532148 hasConcept C554190296 @default.
- W2157532148 hasConcept C76155785 @default.
- W2157532148 hasConcept C86803240 @default.
- W2157532148 hasConcept C99498987 @default.
- W2157532148 hasConceptScore W2157532148C104267543 @default.
- W2157532148 hasConceptScore W2157532148C105795698 @default.
- W2157532148 hasConceptScore W2157532148C106487976 @default.
- W2157532148 hasConceptScore W2157532148C11413529 @default.
- W2157532148 hasConceptScore W2157532148C115961682 @default.
- W2157532148 hasConceptScore W2157532148C134306372 @default.
- W2157532148 hasConceptScore W2157532148C137250428 @default.
- W2157532148 hasConceptScore W2157532148C151730666 @default.
- W2157532148 hasConceptScore W2157532148C154945302 @default.
- W2157532148 hasConceptScore W2157532148C159985019 @default.
- W2157532148 hasConceptScore W2157532148C185142706 @default.
- W2157532148 hasConceptScore W2157532148C185429906 @default.
- W2157532148 hasConceptScore W2157532148C186633575 @default.
- W2157532148 hasConceptScore W2157532148C192562407 @default.
- W2157532148 hasConceptScore W2157532148C2777121530 @default.
- W2157532148 hasConceptScore W2157532148C2778545087 @default.
- W2157532148 hasConceptScore W2157532148C2779343474 @default.
- W2157532148 hasConceptScore W2157532148C28826006 @default.
- W2157532148 hasConceptScore W2157532148C31388003 @default.
- W2157532148 hasConceptScore W2157532148C32834561 @default.
- W2157532148 hasConceptScore W2157532148C33923547 @default.
- W2157532148 hasConceptScore W2157532148C41008148 @default.
- W2157532148 hasConceptScore W2157532148C4199805 @default.
- W2157532148 hasConceptScore W2157532148C554190296 @default.