Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157649205> ?p ?o ?g. }
- W2157649205 endingPage "1488" @default.
- W2157649205 startingPage "1475" @default.
- W2157649205 abstract "Our understanding of the signalling mechanisms involved in the process of stomatal closure is reviewed. Work has concentrated on the mechanisms by which abscisic acid (ABA) induces changes in specific ion channels at both the plasmalemma and the tonoplast leading to efflux of both K + and anions at both membranes, requiring four essential changes. For each we need to identify the specific channels concerned, and the detailed signalling chains by which each is linked through signalling intermediates to ABA. There are two global changes that are identified following ABA treatment, an increase in cytoplasmic pH and an increase in cytoplasmic Ca 2+ , although stomata can close without any measurable global increase in cytoplasmic Ca 2+ . There is also evidence for the importance of several protein phosphatases and protein kinases in the regulation of channel activity. At the plasmalemma, loss of K + requires depolarization of the membrane potential into the range at which the outward K + channel is open. ABA–induced activation of a non–specific cation channel, permeable to Ca 2+ , may contribute to the necessary depolarization, together with ABA–induced activation of S–type anion channels in the plasmalemma, which are then responsible for the necessary anion efflux. The anion channels are activated by Ca 2+ and by phosphorylation, but the precise mechanism of their activation by ABA is not yet clear. ABA also up–regulates the outward K + current at any given membrane potential; this activation is Ca 2+ –independent and is attributed to the increase in cytoplasmic pH, perhaps through the marked pH–sensitivity of protein phosphatase type 2C. Our understanding of mechanisms at the tonoplast is much less complete. A total of two channels, both Ca 2+ –activated, have been identified which are capable of K + efflux; these are the voltage–independent VK channel specific to K + , and the slow vacuolar (SV) channel which opens only at non–physiological tonoplast potentials (cytoplasm positive). The SV channel is permeable to K + and Ca 2+ , and although it has been argued that it could be responsible for Ca 2+ –induced Ca 2+ release, it now seems likely that it opens only under conditions where Ca 2+ will flow from cytoplasm to vacuole. Although tracer measurements show unequivocally that ABA does activate efflux of Cl – from vacuole to cytoplasm, no vacuolar anion channel has yet been identified. There is clear evidence that ABA activates release of Ca 2+ from internal stores, but the source and trigger for ABA–induced increase in cytoplasmic Ca 2+ are uncertain. The tonoplast and another membrane, probably ER, have IP 3 –sensitive Ca 2+ release channels, and the tonoplast has also cADPR–activated Ca 2+ channels. Their relative contributions to ABA–induced release of Ca 2+ from internal stores remain to be established. There is some evidence for activation of phospholipase C by ABA, by an unknown mechanism; plant phospholipase C may be activated by Ca 2+ rather than by the G–proteins used in many animal cell signalling systems. A further ABA–induced channel modulation is the inhibition of the inward K + channel, which is not essential for closing but will prevent opening. It is suggested that this is mediated through the Ca 2+ –activated protein phosphatase, calcineurin. The question of Ca 2+ –independent stomatal closure remains controversial. At the plasmalemma the stimulation of K + efflux is Ca 2+ –independent and, at least in Arabidopsis , activation of anion efflux by ABA may also be Ca 2+ –independent. But there are no indications of Ca 2+ –independent mechanisms for K + efflux at the tonoplast, and the appropriate anion channel at the tonoplast is still to be found. There is also evidence that ABA interferes with a control system in the guard cell, resetting its set–point to lower contents, suggesting that stretch–activated channels also feature in the regulation of guard cell ion channels, perhaps through interactions with cytoskeletal proteins. There is evidence for involvement of actin in the control of guard cell ion channels, although possible mechanisms are still to be identified. Stomatal closure involves net loss of vacuolar sugars as well as potassium salts, and there is an urgent need to address the question of the nature of the signalling chains linking transport and metabolism of sugars to the closing signal." @default.
- W2157649205 created "2016-06-24" @default.
- W2157649205 creator A5073626224 @default.
- W2157649205 date "1998-09-29" @default.
- W2157649205 modified "2023-10-17" @default.
- W2157649205 title "Signal transduction and ion channels in guard cells" @default.
- W2157649205 cites W1518350946 @default.
- W2157649205 cites W1540989796 @default.
- W2157649205 cites W1554484912 @default.
- W2157649205 cites W1561117967 @default.
- W2157649205 cites W18293144 @default.
- W2157649205 cites W1863023627 @default.
- W2157649205 cites W1927242987 @default.
- W2157649205 cites W1941991674 @default.
- W2157649205 cites W1964612704 @default.
- W2157649205 cites W1965354101 @default.
- W2157649205 cites W1970055762 @default.
- W2157649205 cites W1970559469 @default.
- W2157649205 cites W1973323572 @default.
- W2157649205 cites W1976631926 @default.
- W2157649205 cites W1978263877 @default.
- W2157649205 cites W1981617663 @default.
- W2157649205 cites W1983505512 @default.
- W2157649205 cites W1984545712 @default.
- W2157649205 cites W1984705865 @default.
- W2157649205 cites W1990545524 @default.
- W2157649205 cites W1991339054 @default.
- W2157649205 cites W1996901131 @default.
- W2157649205 cites W1999555597 @default.
- W2157649205 cites W2000380189 @default.
- W2157649205 cites W2002968623 @default.
- W2157649205 cites W2003406255 @default.
- W2157649205 cites W2008941968 @default.
- W2157649205 cites W2012341674 @default.
- W2157649205 cites W2015608109 @default.
- W2157649205 cites W2016701024 @default.
- W2157649205 cites W2017942466 @default.
- W2157649205 cites W2019073197 @default.
- W2157649205 cites W2021955016 @default.
- W2157649205 cites W2027314634 @default.
- W2157649205 cites W2028306050 @default.
- W2157649205 cites W2030071431 @default.
- W2157649205 cites W2032733531 @default.
- W2157649205 cites W2032778685 @default.
- W2157649205 cites W2032851776 @default.
- W2157649205 cites W2033348601 @default.
- W2157649205 cites W2034058854 @default.
- W2157649205 cites W2041576237 @default.
- W2157649205 cites W2042610505 @default.
- W2157649205 cites W2047034480 @default.
- W2157649205 cites W2047615738 @default.
- W2157649205 cites W2048300782 @default.
- W2157649205 cites W2051218097 @default.
- W2157649205 cites W2056830037 @default.
- W2157649205 cites W2057567296 @default.
- W2157649205 cites W2058491719 @default.
- W2157649205 cites W2061217332 @default.
- W2157649205 cites W2061965791 @default.
- W2157649205 cites W2071914364 @default.
- W2157649205 cites W2072083281 @default.
- W2157649205 cites W2074024428 @default.
- W2157649205 cites W2074189263 @default.
- W2157649205 cites W2078398686 @default.
- W2157649205 cites W2082973787 @default.
- W2157649205 cites W2088444254 @default.
- W2157649205 cites W2091998408 @default.
- W2157649205 cites W2094629947 @default.
- W2157649205 cites W2095295932 @default.
- W2157649205 cites W2097309874 @default.
- W2157649205 cites W2107361633 @default.
- W2157649205 cites W2108717583 @default.
- W2157649205 cites W2115969192 @default.
- W2157649205 cites W2119018513 @default.
- W2157649205 cites W2120900992 @default.
- W2157649205 cites W2124987538 @default.
- W2157649205 cites W2128900679 @default.
- W2157649205 cites W2131503256 @default.
- W2157649205 cites W2134121307 @default.
- W2157649205 cites W2135025322 @default.
- W2157649205 cites W2137554777 @default.
- W2157649205 cites W2141533734 @default.
- W2157649205 cites W2141892948 @default.
- W2157649205 cites W2144728657 @default.
- W2157649205 cites W2146207329 @default.
- W2157649205 cites W2153691121 @default.
- W2157649205 cites W2167037016 @default.
- W2157649205 cites W2172248463 @default.
- W2157649205 cites W2199890003 @default.
- W2157649205 cites W2764110933 @default.
- W2157649205 cites W3173352565 @default.
- W2157649205 cites W4255112109 @default.
- W2157649205 doi "https://doi.org/10.1098/rstb.1998.0303" @default.
- W2157649205 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1692354" @default.
- W2157649205 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9800209" @default.
- W2157649205 hasPublicationYear "1998" @default.
- W2157649205 type Work @default.
- W2157649205 sameAs 2157649205 @default.
- W2157649205 citedByCount "266" @default.