Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157735331> ?p ?o ?g. }
- W2157735331 endingPage "66" @default.
- W2157735331 startingPage "35" @default.
- W2157735331 abstract "The energy exchange between the kinetic and internal energies in non-premixed reacting compressible homogeneous turbulent shear flow is studied via data generated by direct numerical simulations (DNS). The chemical reaction is modelled by a one- step exothermic irreversible reaction with Arrhenius-type reaction rate. The results show that the heat release has a damping effect on the turbulent kinetic energy for the cases with variable transport properties. The growth rate of the turbulent kinetic energy is primarily in uenced by the reaction through temperature-induced changes in the solenoidal dissipation and modifications in the explicit dilatational terms (pressure–dilatation and dilatational dissipation). The production term in the scaled kinetic energy equation, which is proportional to the Reynolds shear stress anisotropy, is less affected by the heat release. However, the dilatational part of the production term increases during the time when the reaction is important. Additionally, the pressure–dilatation correlation, unlike the non-reacting case, transfers energy in the reacting cases, on the average, from the internal to the kinetic energy. Consequently, the dilatational part of the kinetic energy is enhanced by the reaction. On the contrary, the solenoidal part of the kinetic energy decreases in the reacting cases mainly due to an enhanced viscous dissipation. Similarly to the non-reacting case, it is found that the direct coupling between the solenoidal and dilatational parts of the kinetic energy is small. The structure of the flow with regard to the normal Reynolds stresses is affected by the heat of reaction. Compared to the non-reacting case, the kinetic energy in the direction of the mean velocity decreases during the time when the reaction is important, while it increases in the direction of the shear. This increase is due to the amplification of the dilatational kinetic energy in the x 2 -direction by the reaction. Moreover, the dilatational effects occur primarily in the direction of the shear. These effects are amplified if the heat release is increased or the reaction occurs at later times. The non-reacting models tested for the explicit dilatational terms are not supported by the DNS data for the reacting cases, although it appears that some of the assumptions employed in these models hold also in the presence of heat of reaction." @default.
- W2157735331 created "2016-06-24" @default.
- W2157735331 creator A5045656065 @default.
- W2157735331 creator A5066425123 @default.
- W2157735331 creator A5090514414 @default.
- W2157735331 date "2002-01-09" @default.
- W2157735331 modified "2023-10-17" @default.
- W2157735331 title "The effects of heat release on the energy exchange in reacting turbulent shear flow" @default.
- W2157735331 cites W1511756744 @default.
- W2157735331 cites W1528581602 @default.
- W2157735331 cites W1582589475 @default.
- W2157735331 cites W1603813805 @default.
- W2157735331 cites W1912930600 @default.
- W2157735331 cites W1969164548 @default.
- W2157735331 cites W1969875687 @default.
- W2157735331 cites W1971920790 @default.
- W2157735331 cites W1977838970 @default.
- W2157735331 cites W1991375939 @default.
- W2157735331 cites W1991624795 @default.
- W2157735331 cites W1998888800 @default.
- W2157735331 cites W2004114725 @default.
- W2157735331 cites W2007825908 @default.
- W2157735331 cites W2008455296 @default.
- W2157735331 cites W2024431579 @default.
- W2157735331 cites W2033703385 @default.
- W2157735331 cites W2043291772 @default.
- W2157735331 cites W2060113525 @default.
- W2157735331 cites W2068818144 @default.
- W2157735331 cites W2077831164 @default.
- W2157735331 cites W2094139904 @default.
- W2157735331 cites W2095429521 @default.
- W2157735331 cites W2097076564 @default.
- W2157735331 cites W2105802178 @default.
- W2157735331 cites W2130312478 @default.
- W2157735331 cites W2131908956 @default.
- W2157735331 cites W2160221370 @default.
- W2157735331 cites W2568858934 @default.
- W2157735331 cites W321789317 @default.
- W2157735331 doi "https://doi.org/10.1017/s0022112001006164" @default.
- W2157735331 hasPublicationYear "2002" @default.
- W2157735331 type Work @default.
- W2157735331 sameAs 2157735331 @default.
- W2157735331 citedByCount "45" @default.
- W2157735331 countsByYear W21577353312012 @default.
- W2157735331 countsByYear W21577353312013 @default.
- W2157735331 countsByYear W21577353312014 @default.
- W2157735331 countsByYear W21577353312015 @default.
- W2157735331 countsByYear W21577353312016 @default.
- W2157735331 countsByYear W21577353312017 @default.
- W2157735331 countsByYear W21577353312018 @default.
- W2157735331 countsByYear W21577353312019 @default.
- W2157735331 countsByYear W21577353312020 @default.
- W2157735331 countsByYear W21577353312021 @default.
- W2157735331 countsByYear W21577353312022 @default.
- W2157735331 crossrefType "journal-article" @default.
- W2157735331 hasAuthorship W2157735331A5045656065 @default.
- W2157735331 hasAuthorship W2157735331A5066425123 @default.
- W2157735331 hasAuthorship W2157735331A5090514414 @default.
- W2157735331 hasConcept C121332964 @default.
- W2157735331 hasConcept C135402231 @default.
- W2157735331 hasConcept C135889238 @default.
- W2157735331 hasConcept C148898269 @default.
- W2157735331 hasConcept C15476950 @default.
- W2157735331 hasConcept C182748727 @default.
- W2157735331 hasConcept C192562407 @default.
- W2157735331 hasConcept C196558001 @default.
- W2157735331 hasConcept C39343618 @default.
- W2157735331 hasConcept C45119746 @default.
- W2157735331 hasConcept C57879066 @default.
- W2157735331 hasConcept C7451433 @default.
- W2157735331 hasConcept C74650414 @default.
- W2157735331 hasConcept C86183883 @default.
- W2157735331 hasConcept C91188154 @default.
- W2157735331 hasConcept C97355855 @default.
- W2157735331 hasConceptScore W2157735331C121332964 @default.
- W2157735331 hasConceptScore W2157735331C135402231 @default.
- W2157735331 hasConceptScore W2157735331C135889238 @default.
- W2157735331 hasConceptScore W2157735331C148898269 @default.
- W2157735331 hasConceptScore W2157735331C15476950 @default.
- W2157735331 hasConceptScore W2157735331C182748727 @default.
- W2157735331 hasConceptScore W2157735331C192562407 @default.
- W2157735331 hasConceptScore W2157735331C196558001 @default.
- W2157735331 hasConceptScore W2157735331C39343618 @default.
- W2157735331 hasConceptScore W2157735331C45119746 @default.
- W2157735331 hasConceptScore W2157735331C57879066 @default.
- W2157735331 hasConceptScore W2157735331C7451433 @default.
- W2157735331 hasConceptScore W2157735331C74650414 @default.
- W2157735331 hasConceptScore W2157735331C86183883 @default.
- W2157735331 hasConceptScore W2157735331C91188154 @default.
- W2157735331 hasConceptScore W2157735331C97355855 @default.
- W2157735331 hasLocation W21577353311 @default.
- W2157735331 hasOpenAccess W2157735331 @default.
- W2157735331 hasPrimaryLocation W21577353311 @default.
- W2157735331 hasRelatedWork W2021718291 @default.
- W2157735331 hasRelatedWork W2041328019 @default.
- W2157735331 hasRelatedWork W2052032897 @default.
- W2157735331 hasRelatedWork W2070980289 @default.
- W2157735331 hasRelatedWork W2086403150 @default.