Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157760251> ?p ?o ?g. }
- W2157760251 abstract "The Variability of the stratosphere is crucial for the evolution of the Earth-climate system as a whole. Stratospheric variability on various time scales is influenced by a number of forcings, such as the Quasi-Biennial Oscillation, the El Nino- Southern Oscillation, the 11-yr solar cycle, or volcanic eruptions, that interact to create a complex system. This link is particularly nonlinear during winter when planetary waves can propagate upward to interact with the stratospheric mean flow. Most commonly, sophisticated chemistry-climate models simulate stratospheric variability, driven by the interactions between dynamics, radiation, and chemistry. However, climate models are computationally expensive and quantifying the importance of forcing factors is difficult. In contrast, statistical methods are mathematically simpler, computationally less expensive, and weight forcing factors according to their importance. Statistical methods learn variability patterns from historical data and can potentially forecast these patterns into the future.For the first time, a wide class of statistical methods is used in this work to model stratospheric variability in data from observations, reanalyses, and model simulations. The statistical methods are partly nonlinear and nonstationary making them appropriate to cope with the complex feedbacks that govern the stratosphere. These advanced methods, along with a standard linear method, are compared with respect to their ability to model stratospheric variables on different temporal and spatial domains. The considered methods are linear discriminant analysis (LDA), a cluster method based on finite elements (FEM-VARX), a neural network, namely the multi-layer perceptron (MLP), and the support vector machine (SVM). It is shown how an optimal, method-specific set of tuning parameters is estimated using information criteria along with cross-validation.A prominent example of dynamical wave-mean flow interactions during winter are sudden strato- spheric warmings (SSWs). SSWs are dramatic extreme events characterized by a great temperature increase on daily time scales and a breakdown of the polar vortex. While the resulting anomalies can descend downward and provide predictive skill for tropospheric weather conditions, forecasting SSWs themselves remains a difficult task. It is shown in this work that polar stratospheric variability can be modeled and forecasted using nonlinear and nonstationary statistical methods while incorporating all significant forcing factors. Moreover, an approach based on a nonlinear neural network is presented that can classify SSWs in major, minor, and final warmings for the recent climate. The statistical importance of the forcing factors and their nonlinear interrelationships are estimated. In addition, global stratospheric temperature and ozone are statistically modeled due to their specific importance for indicating changes in dynamics and composition. The four statistical methods are used to quantify the natural variability inherent in the stratosphere so that the impact of anthropogenic forcings can be attributed appropriately. Considering various data sets along with the different independent statistical methods makes it feasible to estimate robust uncertainties. Using the statistical methods, variability in temperature and ozone is successfully forecasted up to the year 2100. It is shown in this work that the standard linear method leads to robust results on the monthly scale but is clearly outperformed by the advanced methods on the daily scale." @default.
- W2157760251 created "2016-06-24" @default.
- W2157760251 creator A5052344379 @default.
- W2157760251 date "2012-01-01" @default.
- W2157760251 modified "2023-09-27" @default.
- W2157760251 title "Statistical Learning to Model Stratospheric Variability" @default.
- W2157760251 cites W1509562192 @default.
- W2157760251 cites W1554663460 @default.
- W2157760251 cites W1596195796 @default.
- W2157760251 cites W1680392829 @default.
- W2157760251 cites W1991822670 @default.
- W2157760251 cites W1995636511 @default.
- W2157760251 cites W2006165291 @default.
- W2157760251 cites W2009435671 @default.
- W2157760251 cites W2024060531 @default.
- W2157760251 cites W2036061892 @default.
- W2157760251 cites W2051416171 @default.
- W2157760251 cites W2053393338 @default.
- W2157760251 cites W2054650627 @default.
- W2157760251 cites W2056760934 @default.
- W2157760251 cites W2082903698 @default.
- W2157760251 cites W2090718018 @default.
- W2157760251 cites W2117897510 @default.
- W2157760251 cites W2139212933 @default.
- W2157760251 cites W2142635246 @default.
- W2157760251 cites W2156909104 @default.
- W2157760251 cites W2158698691 @default.
- W2157760251 cites W2162548336 @default.
- W2157760251 cites W2167051621 @default.
- W2157760251 cites W2173251738 @default.
- W2157760251 cites W3099514962 @default.
- W2157760251 hasPublicationYear "2012" @default.
- W2157760251 type Work @default.
- W2157760251 sameAs 2157760251 @default.
- W2157760251 citedByCount "0" @default.
- W2157760251 crossrefType "dissertation" @default.
- W2157760251 hasAuthorship W2157760251A5052344379 @default.
- W2157760251 hasConcept C111368507 @default.
- W2157760251 hasConcept C114289077 @default.
- W2157760251 hasConcept C119857082 @default.
- W2157760251 hasConcept C121332964 @default.
- W2157760251 hasConcept C127313418 @default.
- W2157760251 hasConcept C132651083 @default.
- W2157760251 hasConcept C153294291 @default.
- W2157760251 hasConcept C158622935 @default.
- W2157760251 hasConcept C163175372 @default.
- W2157760251 hasConcept C163861444 @default.
- W2157760251 hasConcept C168754636 @default.
- W2157760251 hasConcept C197115733 @default.
- W2157760251 hasConcept C205649164 @default.
- W2157760251 hasConcept C207423496 @default.
- W2157760251 hasConcept C39432304 @default.
- W2157760251 hasConcept C41008148 @default.
- W2157760251 hasConcept C49204034 @default.
- W2157760251 hasConcept C50644808 @default.
- W2157760251 hasConcept C60908668 @default.
- W2157760251 hasConcept C62520636 @default.
- W2157760251 hasConceptScore W2157760251C111368507 @default.
- W2157760251 hasConceptScore W2157760251C114289077 @default.
- W2157760251 hasConceptScore W2157760251C119857082 @default.
- W2157760251 hasConceptScore W2157760251C121332964 @default.
- W2157760251 hasConceptScore W2157760251C127313418 @default.
- W2157760251 hasConceptScore W2157760251C132651083 @default.
- W2157760251 hasConceptScore W2157760251C153294291 @default.
- W2157760251 hasConceptScore W2157760251C158622935 @default.
- W2157760251 hasConceptScore W2157760251C163175372 @default.
- W2157760251 hasConceptScore W2157760251C163861444 @default.
- W2157760251 hasConceptScore W2157760251C168754636 @default.
- W2157760251 hasConceptScore W2157760251C197115733 @default.
- W2157760251 hasConceptScore W2157760251C205649164 @default.
- W2157760251 hasConceptScore W2157760251C207423496 @default.
- W2157760251 hasConceptScore W2157760251C39432304 @default.
- W2157760251 hasConceptScore W2157760251C41008148 @default.
- W2157760251 hasConceptScore W2157760251C49204034 @default.
- W2157760251 hasConceptScore W2157760251C50644808 @default.
- W2157760251 hasConceptScore W2157760251C60908668 @default.
- W2157760251 hasConceptScore W2157760251C62520636 @default.
- W2157760251 hasLocation W21577602511 @default.
- W2157760251 hasOpenAccess W2157760251 @default.
- W2157760251 hasPrimaryLocation W21577602511 @default.
- W2157760251 hasRelatedWork W2026235010 @default.
- W2157760251 hasRelatedWork W2111288282 @default.
- W2157760251 hasRelatedWork W2128249083 @default.
- W2157760251 hasRelatedWork W2152417351 @default.
- W2157760251 hasRelatedWork W2155704829 @default.
- W2157760251 hasRelatedWork W2181536993 @default.
- W2157760251 hasRelatedWork W2246137866 @default.
- W2157760251 hasRelatedWork W2485049830 @default.
- W2157760251 hasRelatedWork W2499869350 @default.
- W2157760251 hasRelatedWork W2555138378 @default.
- W2157760251 hasRelatedWork W2589946688 @default.
- W2157760251 hasRelatedWork W2883636980 @default.
- W2157760251 hasRelatedWork W2945621175 @default.
- W2157760251 hasRelatedWork W2979899488 @default.
- W2157760251 hasRelatedWork W2982114375 @default.
- W2157760251 hasRelatedWork W3008287859 @default.
- W2157760251 hasRelatedWork W3022425835 @default.
- W2157760251 hasRelatedWork W3109435147 @default.
- W2157760251 hasRelatedWork W3139201152 @default.
- W2157760251 hasRelatedWork W3181653907 @default.