Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157775566> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2157775566 endingPage "160" @default.
- W2157775566 startingPage "145" @default.
- W2157775566 abstract "A tight Riesz group is a partially ordered group which satisfies a strengthened form of the Riesz interpolation property. The term “tight” was introduced by Miller in [8], and the tight interpolation property has been considered in papers by Fuchs [3], Miller [8, 9], Loy and Miller [7] and Wirth [12]. If the closure of the cone P , in the interval topology, of such a partially ordered group G contains no pseudozeros, then is itself the cone of a partial order on G. Loy and Miller found of particular interest the case in which this associated partial orderis a lattice order. This situation was then considered in reverse by A. Wirth [12] who investigated under what circumstances a lattice ordered group would permit the existence of a tight Riesz order (called a compatible tight Riesz order) for which the initial lattice order is the order defined by the closure of the cone of the tight Riesz order.Wirth gave two fundamental anduseful characterizations of those subsets of the cone of a lattice ordered group that canbe the strict cone of a compatible tight Riesz order; one is in terms of archimedean classes and the other is an elementwise characterization. Although Loy, Miller and Wirth restricted their attention to abelian groups, much of what they do carries over verbatim to nonabelian groups. In the main result of this paper (Theorem 2.6) a description of the strict cone of a compatible tight Riesz order on a lattice ordered group G is given in terms of the prime subgroups of G. This is particularly useful when one is attempting to identify the compatible tight Riesz orders on some particular lattice ordered group or class of lattice ordered groups, since it narrows down to a convenient family of subsets the possible candidates for strict cones of compatible tight Riesz orders. These can then be tested under Wirth's criteria. This technique is illustrated in § 5, where the compatible tight Riesz orders are determined o a lattice ordered group of the type V (Γ, G γ ), where Γ is of finite width, and in § 6, where two examples are considered." @default.
- W2157775566 created "2016-06-24" @default.
- W2157775566 creator A5037112322 @default.
- W2157775566 date "1973-09-01" @default.
- W2157775566 modified "2023-09-27" @default.
- W2157775566 title "Compatible tight Riesz orders and prime subgroups" @default.
- W2157775566 cites W1971464376 @default.
- W2157775566 cites W2043940886 @default.
- W2157775566 cites W2079085677 @default.
- W2157775566 cites W2100255913 @default.
- W2157775566 cites W2116559997 @default.
- W2157775566 cites W2312705953 @default.
- W2157775566 cites W2332461021 @default.
- W2157775566 doi "https://doi.org/10.1017/s0017089500001890" @default.
- W2157775566 hasPublicationYear "1973" @default.
- W2157775566 type Work @default.
- W2157775566 sameAs 2157775566 @default.
- W2157775566 citedByCount "7" @default.
- W2157775566 crossrefType "journal-article" @default.
- W2157775566 hasAuthorship W2157775566A5037112322 @default.
- W2157775566 hasBestOaLocation W21577755661 @default.
- W2157775566 hasConcept C10138342 @default.
- W2157775566 hasConcept C113675457 @default.
- W2157775566 hasConcept C11413529 @default.
- W2157775566 hasConcept C114614502 @default.
- W2157775566 hasConcept C121332964 @default.
- W2157775566 hasConcept C162324750 @default.
- W2157775566 hasConcept C182306322 @default.
- W2157775566 hasConcept C189987565 @default.
- W2157775566 hasConcept C202444582 @default.
- W2157775566 hasConcept C24890656 @default.
- W2157775566 hasConcept C2781204021 @default.
- W2157775566 hasConcept C30014739 @default.
- W2157775566 hasConcept C33923547 @default.
- W2157775566 hasConcept C56969512 @default.
- W2157775566 hasConceptScore W2157775566C10138342 @default.
- W2157775566 hasConceptScore W2157775566C113675457 @default.
- W2157775566 hasConceptScore W2157775566C11413529 @default.
- W2157775566 hasConceptScore W2157775566C114614502 @default.
- W2157775566 hasConceptScore W2157775566C121332964 @default.
- W2157775566 hasConceptScore W2157775566C162324750 @default.
- W2157775566 hasConceptScore W2157775566C182306322 @default.
- W2157775566 hasConceptScore W2157775566C189987565 @default.
- W2157775566 hasConceptScore W2157775566C202444582 @default.
- W2157775566 hasConceptScore W2157775566C24890656 @default.
- W2157775566 hasConceptScore W2157775566C2781204021 @default.
- W2157775566 hasConceptScore W2157775566C30014739 @default.
- W2157775566 hasConceptScore W2157775566C33923547 @default.
- W2157775566 hasConceptScore W2157775566C56969512 @default.
- W2157775566 hasIssue "2" @default.
- W2157775566 hasLocation W21577755661 @default.
- W2157775566 hasOpenAccess W2157775566 @default.
- W2157775566 hasPrimaryLocation W21577755661 @default.
- W2157775566 hasRelatedWork W1970578193 @default.
- W2157775566 hasRelatedWork W2015288988 @default.
- W2157775566 hasRelatedWork W2041710215 @default.
- W2157775566 hasRelatedWork W2072870380 @default.
- W2157775566 hasRelatedWork W2084899942 @default.
- W2157775566 hasRelatedWork W2134382530 @default.
- W2157775566 hasRelatedWork W2136674316 @default.
- W2157775566 hasRelatedWork W3158039265 @default.
- W2157775566 hasRelatedWork W3205917620 @default.
- W2157775566 hasRelatedWork W4287197216 @default.
- W2157775566 hasVolume "14" @default.
- W2157775566 isParatext "false" @default.
- W2157775566 isRetracted "false" @default.
- W2157775566 magId "2157775566" @default.
- W2157775566 workType "article" @default.