Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157834390> ?p ?o ?g. }
- W2157834390 abstract "Finite mixture is widely used in the fields of information processing and data analysis. However, its model selection, i.e., the selection of components in the mixture for a given sample data set, has been still a rather difficult task. Recently, the Bayesian Ying-Yang (BYY) harmony learning has provided a new approach to the Gaussian mixture modeling with a favorite feature that model selection can be made automatically during parameter learning. In this paper, based on the same BYY harmony learning framework for finite mixture, we propose an adaptive gradient BYY learning algorithm for Poisson mixture with automated model selection. It is demonstrated well by the simulation experiments that this adaptive gradient BYY learning algorithm can automatically determine the number of actual Poisson components for a sample data set, with a good estimation of the parameters in the original or true mixture where the components are separated in a certain degree. Moreover, the adaptive gradient BYY learning algorithm is successfully applied to texture classification." @default.
- W2157834390 created "2016-06-24" @default.
- W2157834390 creator A5012267050 @default.
- W2157834390 creator A5021543946 @default.
- W2157834390 creator A5067164993 @default.
- W2157834390 date "2009-11-01" @default.
- W2157834390 modified "2023-09-27" @default.
- W2157834390 title "Parameter estimation of Poisson mixture with automated model selection through BYY harmony learning" @default.
- W2157834390 cites W116926728 @default.
- W2157834390 cites W1487718662 @default.
- W2157834390 cites W1827782689 @default.
- W2157834390 cites W1981367467 @default.
- W2157834390 cites W1981903823 @default.
- W2157834390 cites W1986314403 @default.
- W2157834390 cites W1989824796 @default.
- W2157834390 cites W1992402718 @default.
- W2157834390 cites W1992587049 @default.
- W2157834390 cites W1997404989 @default.
- W2157834390 cites W2015245929 @default.
- W2157834390 cites W2021056606 @default.
- W2157834390 cites W2022852240 @default.
- W2157834390 cites W2028233321 @default.
- W2157834390 cites W2028251347 @default.
- W2157834390 cites W2036836210 @default.
- W2157834390 cites W2038885294 @default.
- W2157834390 cites W2043268497 @default.
- W2157834390 cites W2046076301 @default.
- W2157834390 cites W2054658115 @default.
- W2157834390 cites W2066545179 @default.
- W2157834390 cites W2083136681 @default.
- W2157834390 cites W2090264954 @default.
- W2157834390 cites W2091797506 @default.
- W2157834390 cites W2096878708 @default.
- W2157834390 cites W2108301410 @default.
- W2157834390 cites W2109779985 @default.
- W2157834390 cites W2116328443 @default.
- W2157834390 cites W2117428599 @default.
- W2157834390 cites W2122868998 @default.
- W2157834390 cites W2126100478 @default.
- W2157834390 cites W2126816458 @default.
- W2157834390 cites W2129113478 @default.
- W2157834390 cites W2129827930 @default.
- W2157834390 cites W2130695933 @default.
- W2157834390 cites W2142635246 @default.
- W2157834390 cites W2159503544 @default.
- W2157834390 cites W2166698530 @default.
- W2157834390 cites W2168175751 @default.
- W2157834390 cites W2171288992 @default.
- W2157834390 cites W2325346015 @default.
- W2157834390 cites W2911956715 @default.
- W2157834390 cites W3123521471 @default.
- W2157834390 cites W3124939451 @default.
- W2157834390 cites W3165771198 @default.
- W2157834390 cites W2460174320 @default.
- W2157834390 doi "https://doi.org/10.1016/j.patcog.2009.03.029" @default.
- W2157834390 hasPublicationYear "2009" @default.
- W2157834390 type Work @default.
- W2157834390 sameAs 2157834390 @default.
- W2157834390 citedByCount "7" @default.
- W2157834390 countsByYear W21578343902012 @default.
- W2157834390 countsByYear W21578343902013 @default.
- W2157834390 countsByYear W21578343902016 @default.
- W2157834390 crossrefType "journal-article" @default.
- W2157834390 hasAuthorship W2157834390A5012267050 @default.
- W2157834390 hasAuthorship W2157834390A5021543946 @default.
- W2157834390 hasAuthorship W2157834390A5067164993 @default.
- W2157834390 hasConcept C100906024 @default.
- W2157834390 hasConcept C105795698 @default.
- W2157834390 hasConcept C107673813 @default.
- W2157834390 hasConcept C119857082 @default.
- W2157834390 hasConcept C121332964 @default.
- W2157834390 hasConcept C148483581 @default.
- W2157834390 hasConcept C153180895 @default.
- W2157834390 hasConcept C154945302 @default.
- W2157834390 hasConcept C163716315 @default.
- W2157834390 hasConcept C33923547 @default.
- W2157834390 hasConcept C41008148 @default.
- W2157834390 hasConcept C61224824 @default.
- W2157834390 hasConcept C62520636 @default.
- W2157834390 hasConcept C93959086 @default.
- W2157834390 hasConceptScore W2157834390C100906024 @default.
- W2157834390 hasConceptScore W2157834390C105795698 @default.
- W2157834390 hasConceptScore W2157834390C107673813 @default.
- W2157834390 hasConceptScore W2157834390C119857082 @default.
- W2157834390 hasConceptScore W2157834390C121332964 @default.
- W2157834390 hasConceptScore W2157834390C148483581 @default.
- W2157834390 hasConceptScore W2157834390C153180895 @default.
- W2157834390 hasConceptScore W2157834390C154945302 @default.
- W2157834390 hasConceptScore W2157834390C163716315 @default.
- W2157834390 hasConceptScore W2157834390C33923547 @default.
- W2157834390 hasConceptScore W2157834390C41008148 @default.
- W2157834390 hasConceptScore W2157834390C61224824 @default.
- W2157834390 hasConceptScore W2157834390C62520636 @default.
- W2157834390 hasConceptScore W2157834390C93959086 @default.
- W2157834390 hasLocation W21578343901 @default.
- W2157834390 hasOpenAccess W2157834390 @default.
- W2157834390 hasPrimaryLocation W21578343901 @default.
- W2157834390 hasRelatedWork W1483629850 @default.
- W2157834390 hasRelatedWork W1484552460 @default.
- W2157834390 hasRelatedWork W1587070286 @default.