Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157852156> ?p ?o ?g. }
- W2157852156 endingPage "255" @default.
- W2157852156 startingPage "231" @default.
- W2157852156 abstract "In the human sciences, ability tests or psychological inventories are often repeatedly conducted to measure growth. Standard item response models do not take into account possible autocorrelation in longitudinal data. In this study, the authors propose an item response model to account for autocorrelation. The proposed three-level model consists of multiple facets (e.g., person, item, and rater facets) and slope parameters. Level 1 is an item response (within-occasion) model; Level 2 is a between-occasion and within-person model; and Level 3 is a between-person model. Parameters can be estimated using the computer software WinBUGS, which uses Markov Chain Monte Carlo (MCMC) algorithms. Through a series of simulations, it was found that the parameters in the proposed model can be recovered fairly well. Real data of job performance judged by raters at various time points were analyzed to illustrate the implications and application of the proposed model." @default.
- W2157852156 created "2016-06-24" @default.
- W2157852156 creator A5065567560 @default.
- W2157852156 creator A5091529966 @default.
- W2157852156 date "2012-04-01" @default.
- W2157852156 modified "2023-10-01" @default.
- W2157852156 title "The Generalized Multilevel Facets Model for Longitudinal Data" @default.
- W2157852156 cites W1536497620 @default.
- W2157852156 cites W1567548236 @default.
- W2157852156 cites W1963627176 @default.
- W2157852156 cites W1966576448 @default.
- W2157852156 cites W1967396577 @default.
- W2157852156 cites W2010170450 @default.
- W2157852156 cites W2020090407 @default.
- W2157852156 cites W2020999234 @default.
- W2157852156 cites W2030421604 @default.
- W2157852156 cites W2031792658 @default.
- W2157852156 cites W2037070511 @default.
- W2157852156 cites W2043241258 @default.
- W2157852156 cites W2043728396 @default.
- W2157852156 cites W2051039162 @default.
- W2157852156 cites W2054388040 @default.
- W2157852156 cites W2056760934 @default.
- W2157852156 cites W2057765075 @default.
- W2157852156 cites W2069567754 @default.
- W2157852156 cites W2074282020 @default.
- W2157852156 cites W2082550566 @default.
- W2157852156 cites W2093978370 @default.
- W2157852156 cites W2108306139 @default.
- W2157852156 cites W2113338391 @default.
- W2157852156 cites W2124607502 @default.
- W2157852156 cites W2125243736 @default.
- W2157852156 cites W2130783497 @default.
- W2157852156 cites W2132258435 @default.
- W2157852156 cites W2138309709 @default.
- W2157852156 cites W2140869847 @default.
- W2157852156 cites W2141273398 @default.
- W2157852156 cites W2144089869 @default.
- W2157852156 cites W2152977846 @default.
- W2157852156 cites W2158518800 @default.
- W2157852156 cites W2160900637 @default.
- W2157852156 cites W2168003017 @default.
- W2157852156 cites W2170454983 @default.
- W2157852156 cites W4244393294 @default.
- W2157852156 doi "https://doi.org/10.3102/1076998611402503" @default.
- W2157852156 hasPublicationYear "2012" @default.
- W2157852156 type Work @default.
- W2157852156 sameAs 2157852156 @default.
- W2157852156 citedByCount "23" @default.
- W2157852156 countsByYear W21578521562013 @default.
- W2157852156 countsByYear W21578521562014 @default.
- W2157852156 countsByYear W21578521562015 @default.
- W2157852156 countsByYear W21578521562016 @default.
- W2157852156 countsByYear W21578521562017 @default.
- W2157852156 countsByYear W21578521562018 @default.
- W2157852156 countsByYear W21578521562019 @default.
- W2157852156 countsByYear W21578521562020 @default.
- W2157852156 countsByYear W21578521562021 @default.
- W2157852156 countsByYear W21578521562023 @default.
- W2157852156 crossrefType "journal-article" @default.
- W2157852156 hasAuthorship W2157852156A5065567560 @default.
- W2157852156 hasAuthorship W2157852156A5091529966 @default.
- W2157852156 hasConcept C105795698 @default.
- W2157852156 hasConcept C111350023 @default.
- W2157852156 hasConcept C119857082 @default.
- W2157852156 hasConcept C124101348 @default.
- W2157852156 hasConcept C143724316 @default.
- W2157852156 hasConcept C149782125 @default.
- W2157852156 hasConcept C151730666 @default.
- W2157852156 hasConcept C171606756 @default.
- W2157852156 hasConcept C19499675 @default.
- W2157852156 hasConcept C19875794 @default.
- W2157852156 hasConcept C2780009758 @default.
- W2157852156 hasConcept C3020672099 @default.
- W2157852156 hasConcept C33923547 @default.
- W2157852156 hasConcept C41008148 @default.
- W2157852156 hasConcept C5297727 @default.
- W2157852156 hasConcept C53059260 @default.
- W2157852156 hasConcept C86803240 @default.
- W2157852156 hasConceptScore W2157852156C105795698 @default.
- W2157852156 hasConceptScore W2157852156C111350023 @default.
- W2157852156 hasConceptScore W2157852156C119857082 @default.
- W2157852156 hasConceptScore W2157852156C124101348 @default.
- W2157852156 hasConceptScore W2157852156C143724316 @default.
- W2157852156 hasConceptScore W2157852156C149782125 @default.
- W2157852156 hasConceptScore W2157852156C151730666 @default.
- W2157852156 hasConceptScore W2157852156C171606756 @default.
- W2157852156 hasConceptScore W2157852156C19499675 @default.
- W2157852156 hasConceptScore W2157852156C19875794 @default.
- W2157852156 hasConceptScore W2157852156C2780009758 @default.
- W2157852156 hasConceptScore W2157852156C3020672099 @default.
- W2157852156 hasConceptScore W2157852156C33923547 @default.
- W2157852156 hasConceptScore W2157852156C41008148 @default.
- W2157852156 hasConceptScore W2157852156C5297727 @default.
- W2157852156 hasConceptScore W2157852156C53059260 @default.
- W2157852156 hasConceptScore W2157852156C86803240 @default.
- W2157852156 hasIssue "2" @default.
- W2157852156 hasLocation W21578521561 @default.