Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157989183> ?p ?o ?g. }
- W2157989183 endingPage "1294" @default.
- W2157989183 startingPage "1286" @default.
- W2157989183 abstract "In visual recognition problems, the common data distribution mismatches between training and testing make domain adaptation essential. However, image data is difficult to manually divide into the discrete domains required by adaptation algorithms, and the standard practice of equating datasets with domains is a weak proxy for all the real conditions that alter the statistics in complex ways (lighting, pose, background, resolution, etc.) We propose an approach to automatically discover latent domains in image or video datasets. Our formulation imposes two key properties on domains: maximum distinctiveness and maximum learnability. By maximum distinctiveness, we require the underlying distributions of the identified domains to be different from each other to the maximum extent; by maximum learnability, we ensure that a strong discriminative model can be learned from the domain. We devise a nonparametric formulation and efficient optimization procedure that can successfully discover domains among both training and test data. We extensively evaluate our approach on object recognition and human activity recognition tasks." @default.
- W2157989183 created "2016-06-24" @default.
- W2157989183 creator A5012765543 @default.
- W2157989183 creator A5017319429 @default.
- W2157989183 creator A5021516103 @default.
- W2157989183 date "2013-12-05" @default.
- W2157989183 modified "2023-09-29" @default.
- W2157989183 title "Reshaping Visual Datasets for Domain Adaptation" @default.
- W2157989183 cites W1487322600 @default.
- W2157989183 cites W1536302525 @default.
- W2157989183 cites W1576445103 @default.
- W2157989183 cites W1593040460 @default.
- W2157989183 cites W1677409904 @default.
- W2157989183 cites W1722318740 @default.
- W2157989183 cites W1822439997 @default.
- W2157989183 cites W1855679610 @default.
- W2157989183 cites W2010243644 @default.
- W2157989183 cites W2031342017 @default.
- W2157989183 cites W2031489346 @default.
- W2157989183 cites W2034368206 @default.
- W2157989183 cites W2069057437 @default.
- W2157989183 cites W2090834590 @default.
- W2157989183 cites W2097342496 @default.
- W2157989183 cites W2099501835 @default.
- W2157989183 cites W2105523772 @default.
- W2157989183 cites W2107250100 @default.
- W2157989183 cites W2108598243 @default.
- W2157989183 cites W2110764733 @default.
- W2157989183 cites W2112483442 @default.
- W2157989183 cites W2115403315 @default.
- W2157989183 cites W2120354757 @default.
- W2157989183 cites W2128053425 @default.
- W2157989183 cites W2131953535 @default.
- W2157989183 cites W2133434696 @default.
- W2157989183 cites W2137901802 @default.
- W2157989183 cites W2149466042 @default.
- W2157989183 cites W2158108973 @default.
- W2157989183 cites W2158815628 @default.
- W2157989183 cites W2162651021 @default.
- W2157989183 cites W2166070055 @default.
- W2157989183 cites W2239646537 @default.
- W2157989183 cites W2811380766 @default.
- W2157989183 cites W2950536412 @default.
- W2157989183 cites W59704279 @default.
- W2157989183 hasPublicationYear "2013" @default.
- W2157989183 type Work @default.
- W2157989183 sameAs 2157989183 @default.
- W2157989183 citedByCount "60" @default.
- W2157989183 countsByYear W21579891832014 @default.
- W2157989183 countsByYear W21579891832015 @default.
- W2157989183 countsByYear W21579891832016 @default.
- W2157989183 countsByYear W21579891832017 @default.
- W2157989183 countsByYear W21579891832018 @default.
- W2157989183 countsByYear W21579891832019 @default.
- W2157989183 countsByYear W21579891832020 @default.
- W2157989183 countsByYear W21579891832021 @default.
- W2157989183 countsByYear W21579891832022 @default.
- W2157989183 crossrefType "proceedings-article" @default.
- W2157989183 hasAuthorship W2157989183A5012765543 @default.
- W2157989183 hasAuthorship W2157989183A5017319429 @default.
- W2157989183 hasAuthorship W2157989183A5021516103 @default.
- W2157989183 hasConcept C102366305 @default.
- W2157989183 hasConcept C105795698 @default.
- W2157989183 hasConcept C115961682 @default.
- W2157989183 hasConcept C119857082 @default.
- W2157989183 hasConcept C120665830 @default.
- W2157989183 hasConcept C121332964 @default.
- W2157989183 hasConcept C124101348 @default.
- W2157989183 hasConcept C134306372 @default.
- W2157989183 hasConcept C139807058 @default.
- W2157989183 hasConcept C147037132 @default.
- W2157989183 hasConcept C153180895 @default.
- W2157989183 hasConcept C154945302 @default.
- W2157989183 hasConcept C15744967 @default.
- W2157989183 hasConcept C16910744 @default.
- W2157989183 hasConcept C199360897 @default.
- W2157989183 hasConcept C2776434776 @default.
- W2157989183 hasConcept C2777723229 @default.
- W2157989183 hasConcept C33923547 @default.
- W2157989183 hasConcept C36503486 @default.
- W2157989183 hasConcept C41008148 @default.
- W2157989183 hasConcept C47385372 @default.
- W2157989183 hasConcept C542102704 @default.
- W2157989183 hasConcept C75294576 @default.
- W2157989183 hasConcept C95623464 @default.
- W2157989183 hasConcept C97931131 @default.
- W2157989183 hasConceptScore W2157989183C102366305 @default.
- W2157989183 hasConceptScore W2157989183C105795698 @default.
- W2157989183 hasConceptScore W2157989183C115961682 @default.
- W2157989183 hasConceptScore W2157989183C119857082 @default.
- W2157989183 hasConceptScore W2157989183C120665830 @default.
- W2157989183 hasConceptScore W2157989183C121332964 @default.
- W2157989183 hasConceptScore W2157989183C124101348 @default.
- W2157989183 hasConceptScore W2157989183C134306372 @default.
- W2157989183 hasConceptScore W2157989183C139807058 @default.
- W2157989183 hasConceptScore W2157989183C147037132 @default.
- W2157989183 hasConceptScore W2157989183C153180895 @default.
- W2157989183 hasConceptScore W2157989183C154945302 @default.