Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158016851> ?p ?o ?g. }
- W2158016851 endingPage "165" @default.
- W2158016851 startingPage "151" @default.
- W2158016851 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 315:151-165 (2006) - doi:10.3354/meps315151 Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways Daniele Nizzoli1, David T. Welsh2,*, Elisa Anna Fano3, Pierluigi Viaroli1 1Dipartimento di Scienze Ambientali, Università degli Studi di Parma, Parco Area delle Scienze 33/A, 43100 Parma, Italy 2School of Environmental and Applied Sciences, and Centre for Aquatic Processes and Pollution, Griffith University, Gold Coast Campus, PMB 50 GC Mail Centre, Bundall 9726 Queensland, Australia 3Dipartimento di Biologia, Università degli Studi di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy *Corresponding author. Email: d.welsh@griffith.edu.au ABSTRACT: The influences of suspended mussel and infaunal clam cultivation on benthic metabolism and nutrient cycling were compared in Goro lagoon, Italy. Both aquaculture types stimulated benthic metabolism, with sediment oxygen demand (SOD), CO2 and ammonium effluxes of up to 14, 16 and 1.2 mmol m2 h1. However, whilst mussel farming preferentially stimulated anaerobic metabolism and sediment reduction, clam farming did not. The mussel ropes were also large oxygen sinks and ammonium sources, with oxygen consumption and ammonium production rates of 1.4 to 1.5 and 0.18 to 0.43 mmol kg1 h1. Consequently, the overall impacts of mussel farming on oxygen and nutrient dynamics were much greater than those of clam farming. There were also differences in nitrate-reduction processes and the nitrate sources that fuelled them. In winter, at high water column nitrate concentrations, highest nitrate reduction rates (~320 µmol m2 h1) occurred at the mussel farm. Nitrate reduction was driven predominantly by water column nitrate and ~30% of nitrate reduced was recycled to ammonium via dissimilatory nitrate reduction to ammonium (DNRA). At the control and clam farm sites, nitrate reduction rates were lower (~180 µmol m2 h1), nitrification supplied ~30% of nitrate and denitrification was dominant. In summer under low nitrate conditions, nitrate reduction was highest (~130 µmol m2 h1) at the mussel farm site, but this activity was completely dependent upon water column nitrate and 95% of nitrate was reduced via DNRA. In contrast, at the clam farm station, DNRA was unimportant and nitrification was the major nitrate source for denitrification. Consequently, whilst nitrate reduction processes eliminated fixed N from the clam farm sediments via coupled nitrification-denitrification, the dominance of DNRA at the mussel farm site resulted in a net N input to the sediment compartment. These large differences in the impacts of clam and mussel farming can be explained by the fact that infaunal clams stimulate transfer of both organic matter and oxygen to the sediment, whereas suspended mussels enhance only organic matter inputs. KEY WORDS: Aquaculture impacts · Tapes philippinarum · Mytilus galloprovincialis · Biodeposition · Nutrient cycles · Nitrification · Denitrification · Dissimilatory nitrate reduction to ammonium Full text in pdf format PreviousNextExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 315. Online publication date: June 13, 2006 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2006 Inter-Research." @default.
- W2158016851 created "2016-06-24" @default.
- W2158016851 creator A5023743757 @default.
- W2158016851 creator A5039217410 @default.
- W2158016851 creator A5068892400 @default.
- W2158016851 creator A5083064892 @default.
- W2158016851 date "2006-06-13" @default.
- W2158016851 modified "2023-10-16" @default.
- W2158016851 title "Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways" @default.
- W2158016851 cites W130804888 @default.
- W2158016851 cites W135631842 @default.
- W2158016851 cites W142677422 @default.
- W2158016851 cites W1504529441 @default.
- W2158016851 cites W1967311607 @default.
- W2158016851 cites W1970965737 @default.
- W2158016851 cites W1976399944 @default.
- W2158016851 cites W1978710226 @default.
- W2158016851 cites W1980720682 @default.
- W2158016851 cites W1984181861 @default.
- W2158016851 cites W1987667149 @default.
- W2158016851 cites W1988486510 @default.
- W2158016851 cites W1988608492 @default.
- W2158016851 cites W1992120272 @default.
- W2158016851 cites W1993655519 @default.
- W2158016851 cites W1994581692 @default.
- W2158016851 cites W1998954638 @default.
- W2158016851 cites W2000555303 @default.
- W2158016851 cites W2008189643 @default.
- W2158016851 cites W2008961166 @default.
- W2158016851 cites W2016270452 @default.
- W2158016851 cites W2019166239 @default.
- W2158016851 cites W2025666086 @default.
- W2158016851 cites W2031429986 @default.
- W2158016851 cites W2033893680 @default.
- W2158016851 cites W2035518975 @default.
- W2158016851 cites W2038234160 @default.
- W2158016851 cites W2040154656 @default.
- W2158016851 cites W2040520511 @default.
- W2158016851 cites W2045921420 @default.
- W2158016851 cites W2053891612 @default.
- W2158016851 cites W2056958898 @default.
- W2158016851 cites W2057046484 @default.
- W2158016851 cites W2057348534 @default.
- W2158016851 cites W2057514139 @default.
- W2158016851 cites W2060101690 @default.
- W2158016851 cites W2062720097 @default.
- W2158016851 cites W2066451267 @default.
- W2158016851 cites W2067096533 @default.
- W2158016851 cites W2071492075 @default.
- W2158016851 cites W2081329861 @default.
- W2158016851 cites W2082250875 @default.
- W2158016851 cites W2085192177 @default.
- W2158016851 cites W2087123805 @default.
- W2158016851 cites W2090380032 @default.
- W2158016851 cites W2094022720 @default.
- W2158016851 cites W2094969902 @default.
- W2158016851 cites W2099401700 @default.
- W2158016851 cites W2101059494 @default.
- W2158016851 cites W2112568699 @default.
- W2158016851 cites W2114088866 @default.
- W2158016851 cites W2120312641 @default.
- W2158016851 cites W2155800611 @default.
- W2158016851 cites W2166388109 @default.
- W2158016851 cites W2166395264 @default.
- W2158016851 cites W2297011296 @default.
- W2158016851 cites W3215589432 @default.
- W2158016851 cites W64911898 @default.
- W2158016851 doi "https://doi.org/10.3354/meps315151" @default.
- W2158016851 hasPublicationYear "2006" @default.
- W2158016851 type Work @default.
- W2158016851 sameAs 2158016851 @default.
- W2158016851 citedByCount "151" @default.
- W2158016851 countsByYear W21580168512012 @default.
- W2158016851 countsByYear W21580168512013 @default.
- W2158016851 countsByYear W21580168512014 @default.
- W2158016851 countsByYear W21580168512015 @default.
- W2158016851 countsByYear W21580168512016 @default.
- W2158016851 countsByYear W21580168512017 @default.
- W2158016851 countsByYear W21580168512018 @default.
- W2158016851 countsByYear W21580168512019 @default.
- W2158016851 countsByYear W21580168512020 @default.
- W2158016851 countsByYear W21580168512021 @default.
- W2158016851 countsByYear W21580168512022 @default.
- W2158016851 countsByYear W21580168512023 @default.
- W2158016851 crossrefType "journal-article" @default.
- W2158016851 hasAuthorship W2158016851A5023743757 @default.
- W2158016851 hasAuthorship W2158016851A5039217410 @default.
- W2158016851 hasAuthorship W2158016851A5068892400 @default.
- W2158016851 hasAuthorship W2158016851A5083064892 @default.
- W2158016851 hasBestOaLocation W21580168511 @default.
- W2158016851 hasConcept C142796444 @default.
- W2158016851 hasConcept C164638232 @default.
- W2158016851 hasConcept C178790620 @default.
- W2158016851 hasConcept C185592680 @default.
- W2158016851 hasConcept C18903297 @default.
- W2158016851 hasConcept C205649164 @default.
- W2158016851 hasConcept C2776384668 @default.
- W2158016851 hasConcept C2779987062 @default.