Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158160107> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2158160107 abstract "Markov model (HMM) is a stochastic method which has been used in various application like speech processing, signal processing and character recognition. It has three main problems. Third problem of HMM is the one in which we optimize the model parameters so as to describe how a given observation sequence comes about. The observation sequence is used to adjust the model parameters is called training sequence since it is used to train the HMM. One of the conventional methods that are applied in setting HMM model parameters values is Baum Welch algorithm. So in this paper Go With the Winner (GWW) method is used to train the HMM Parameters. We have already done experiment of same set of data using Baum Welch, Metropolis, Simulated Annealing and Genetic algorithm. The experimental results show that GWW is found to reach maxima in less number of transactions and the value of P(O|λ) is also much higher in comparison to Metropolis, Simulated Annealing and Genetic 1. INTRODUCTIONrandom search methods can be used to estimate HMM parameters. In this paper, four random search techniques are used and the performance of these method Compared with Go with the winner algorithm. These methods are Metropolis, Simulated Annealing,, Genetic Algorithm and one of the traditional method ie. Baum Welch algorithm. These algorithms are used to estimate HMM parameters. The estimation of good model parameters affects the performance to search global maxima or minima so that values of these" @default.
- W2158160107 created "2016-06-24" @default.
- W2158160107 creator A5039499323 @default.
- W2158160107 creator A5076052881 @default.
- W2158160107 date "2011-03-31" @default.
- W2158160107 modified "2023-09-25" @default.
- W2158160107 title "Parameter Estimation of Hidden Markov Models (HMM) using go with the Winner Algorithms" @default.
- W2158160107 cites W1524510640 @default.
- W2158160107 cites W1969956603 @default.
- W2158160107 cites W2051832206 @default.
- W2158160107 cites W2121928248 @default.
- W2158160107 cites W2121957462 @default.
- W2158160107 cites W2171776423 @default.
- W2158160107 cites W2340006107 @default.
- W2158160107 cites W2890040444 @default.
- W2158160107 doi "https://doi.org/10.5120/2282-2954" @default.
- W2158160107 hasPublicationYear "2011" @default.
- W2158160107 type Work @default.
- W2158160107 sameAs 2158160107 @default.
- W2158160107 citedByCount "0" @default.
- W2158160107 crossrefType "journal-article" @default.
- W2158160107 hasAuthorship W2158160107A5039499323 @default.
- W2158160107 hasAuthorship W2158160107A5076052881 @default.
- W2158160107 hasBestOaLocation W21581601071 @default.
- W2158160107 hasConcept C11413529 @default.
- W2158160107 hasConcept C119857082 @default.
- W2158160107 hasConcept C126980161 @default.
- W2158160107 hasConcept C134306372 @default.
- W2158160107 hasConcept C153180895 @default.
- W2158160107 hasConcept C154945302 @default.
- W2158160107 hasConcept C177264268 @default.
- W2158160107 hasConcept C186633575 @default.
- W2158160107 hasConcept C199360897 @default.
- W2158160107 hasConcept C23224414 @default.
- W2158160107 hasConcept C2778112365 @default.
- W2158160107 hasConcept C33923547 @default.
- W2158160107 hasConcept C41008148 @default.
- W2158160107 hasConcept C54355233 @default.
- W2158160107 hasConcept C86803240 @default.
- W2158160107 hasConcept C8880873 @default.
- W2158160107 hasConcept C98763669 @default.
- W2158160107 hasConceptScore W2158160107C11413529 @default.
- W2158160107 hasConceptScore W2158160107C119857082 @default.
- W2158160107 hasConceptScore W2158160107C126980161 @default.
- W2158160107 hasConceptScore W2158160107C134306372 @default.
- W2158160107 hasConceptScore W2158160107C153180895 @default.
- W2158160107 hasConceptScore W2158160107C154945302 @default.
- W2158160107 hasConceptScore W2158160107C177264268 @default.
- W2158160107 hasConceptScore W2158160107C186633575 @default.
- W2158160107 hasConceptScore W2158160107C199360897 @default.
- W2158160107 hasConceptScore W2158160107C23224414 @default.
- W2158160107 hasConceptScore W2158160107C2778112365 @default.
- W2158160107 hasConceptScore W2158160107C33923547 @default.
- W2158160107 hasConceptScore W2158160107C41008148 @default.
- W2158160107 hasConceptScore W2158160107C54355233 @default.
- W2158160107 hasConceptScore W2158160107C86803240 @default.
- W2158160107 hasConceptScore W2158160107C8880873 @default.
- W2158160107 hasConceptScore W2158160107C98763669 @default.
- W2158160107 hasLocation W21581601071 @default.
- W2158160107 hasLocation W21581601072 @default.
- W2158160107 hasOpenAccess W2158160107 @default.
- W2158160107 hasPrimaryLocation W21581601071 @default.
- W2158160107 hasRelatedWork W1520018740 @default.
- W2158160107 hasRelatedWork W1559483828 @default.
- W2158160107 hasRelatedWork W1974322033 @default.
- W2158160107 hasRelatedWork W198922305 @default.
- W2158160107 hasRelatedWork W2051832206 @default.
- W2158160107 hasRelatedWork W2064256900 @default.
- W2158160107 hasRelatedWork W2065802601 @default.
- W2158160107 hasRelatedWork W2083296885 @default.
- W2158160107 hasRelatedWork W2094652806 @default.
- W2158160107 hasRelatedWork W2133750237 @default.
- W2158160107 hasRelatedWork W2167788194 @default.
- W2158160107 hasRelatedWork W2356311806 @default.
- W2158160107 hasRelatedWork W2368072817 @default.
- W2158160107 hasRelatedWork W2416409149 @default.
- W2158160107 hasRelatedWork W249113333 @default.
- W2158160107 hasRelatedWork W2509091112 @default.
- W2158160107 hasRelatedWork W3133369742 @default.
- W2158160107 hasRelatedWork W3148777376 @default.
- W2158160107 hasRelatedWork W62212311 @default.
- W2158160107 hasRelatedWork W2431724217 @default.
- W2158160107 isParatext "false" @default.
- W2158160107 isRetracted "false" @default.
- W2158160107 magId "2158160107" @default.
- W2158160107 workType "article" @default.