Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158179849> ?p ?o ?g. }
- W2158179849 endingPage "188" @default.
- W2158179849 startingPage "175" @default.
- W2158179849 abstract "The accuracy of three different data-driven methods, namely, Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANN), is investigated for hourly sea water level prediction at the Mukho Station in the East Sea (Sea of Japan). Current and four previous level measurements are used as input variables to predict sea water levels up to 1, 24, 48, 72, 96 and 120 hours ahead. Three statistical evaluation parameters, namely, the correlation coefficient, the root mean square error and the scatter index are used to assess how the models perform. Investigation results indicate that, when compared to measurements, for +1h prediction interval, all three models perform well (with average values of R = 0.993, RMSE = 1.3 cm and SI = 0.04), with slightly better results produced by the ANNs and ANFIS, while increasing the prediction interval degrades model performance." @default.
- W2158179849 created "2016-06-24" @default.
- W2158179849 creator A5016315589 @default.
- W2158179849 creator A5034064114 @default.
- W2158179849 creator A5044658695 @default.
- W2158179849 creator A5059334907 @default.
- W2158179849 creator A5064448797 @default.
- W2158179849 date "2014-12-01" @default.
- W2158179849 modified "2023-09-24" @default.
- W2158179849 title "Forecasting Sea Water Levels at Mukho Station, South Korea Using Soft Computing Techniques" @default.
- W2158179849 cites W1969927657 @default.
- W2158179849 cites W1975201621 @default.
- W2158179849 cites W1980131691 @default.
- W2158179849 cites W1995266473 @default.
- W2158179849 cites W1998300065 @default.
- W2158179849 cites W1998863178 @default.
- W2158179849 cites W2002467882 @default.
- W2158179849 cites W2008578468 @default.
- W2158179849 cites W2015426571 @default.
- W2158179849 cites W2019207321 @default.
- W2158179849 cites W2022890795 @default.
- W2158179849 cites W2026046132 @default.
- W2158179849 cites W2030944286 @default.
- W2158179849 cites W2032223839 @default.
- W2158179849 cites W2033332045 @default.
- W2158179849 cites W2037460094 @default.
- W2158179849 cites W2062724642 @default.
- W2158179849 cites W2065717691 @default.
- W2158179849 cites W2072697915 @default.
- W2158179849 cites W2078280512 @default.
- W2158179849 cites W2079325629 @default.
- W2158179849 cites W2083763170 @default.
- W2158179849 cites W2092997181 @default.
- W2158179849 cites W2112442192 @default.
- W2158179849 cites W2113703556 @default.
- W2158179849 cites W2120304879 @default.
- W2158179849 cites W2156662181 @default.
- W2158179849 cites W2169046426 @default.
- W2158179849 cites W2172147742 @default.
- W2158179849 cites W4205686602 @default.
- W2158179849 doi "https://doi.org/10.1260/1759-3131.5.4.175" @default.
- W2158179849 hasPublicationYear "2014" @default.
- W2158179849 type Work @default.
- W2158179849 sameAs 2158179849 @default.
- W2158179849 citedByCount "14" @default.
- W2158179849 countsByYear W21581798492015 @default.
- W2158179849 countsByYear W21581798492016 @default.
- W2158179849 countsByYear W21581798492018 @default.
- W2158179849 countsByYear W21581798492019 @default.
- W2158179849 countsByYear W21581798492020 @default.
- W2158179849 countsByYear W21581798492021 @default.
- W2158179849 countsByYear W21581798492022 @default.
- W2158179849 crossrefType "journal-article" @default.
- W2158179849 hasAuthorship W2158179849A5016315589 @default.
- W2158179849 hasAuthorship W2158179849A5034064114 @default.
- W2158179849 hasAuthorship W2158179849A5044658695 @default.
- W2158179849 hasAuthorship W2158179849A5059334907 @default.
- W2158179849 hasAuthorship W2158179849A5064448797 @default.
- W2158179849 hasBestOaLocation W21581798491 @default.
- W2158179849 hasConcept C105795698 @default.
- W2158179849 hasConcept C114614502 @default.
- W2158179849 hasConcept C139945424 @default.
- W2158179849 hasConcept C140073362 @default.
- W2158179849 hasConcept C153294291 @default.
- W2158179849 hasConcept C154945302 @default.
- W2158179849 hasConcept C170061395 @default.
- W2158179849 hasConcept C186108316 @default.
- W2158179849 hasConcept C195975749 @default.
- W2158179849 hasConcept C205649164 @default.
- W2158179849 hasConcept C2778067643 @default.
- W2158179849 hasConcept C2780092901 @default.
- W2158179849 hasConcept C2988105877 @default.
- W2158179849 hasConcept C33923547 @default.
- W2158179849 hasConcept C39432304 @default.
- W2158179849 hasConcept C41008148 @default.
- W2158179849 hasConcept C50644808 @default.
- W2158179849 hasConcept C58166 @default.
- W2158179849 hasConcept C6980683 @default.
- W2158179849 hasConceptScore W2158179849C105795698 @default.
- W2158179849 hasConceptScore W2158179849C114614502 @default.
- W2158179849 hasConceptScore W2158179849C139945424 @default.
- W2158179849 hasConceptScore W2158179849C140073362 @default.
- W2158179849 hasConceptScore W2158179849C153294291 @default.
- W2158179849 hasConceptScore W2158179849C154945302 @default.
- W2158179849 hasConceptScore W2158179849C170061395 @default.
- W2158179849 hasConceptScore W2158179849C186108316 @default.
- W2158179849 hasConceptScore W2158179849C195975749 @default.
- W2158179849 hasConceptScore W2158179849C205649164 @default.
- W2158179849 hasConceptScore W2158179849C2778067643 @default.
- W2158179849 hasConceptScore W2158179849C2780092901 @default.
- W2158179849 hasConceptScore W2158179849C2988105877 @default.
- W2158179849 hasConceptScore W2158179849C33923547 @default.
- W2158179849 hasConceptScore W2158179849C39432304 @default.
- W2158179849 hasConceptScore W2158179849C41008148 @default.
- W2158179849 hasConceptScore W2158179849C50644808 @default.
- W2158179849 hasConceptScore W2158179849C58166 @default.
- W2158179849 hasConceptScore W2158179849C6980683 @default.
- W2158179849 hasIssue "4" @default.