Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158308356> ?p ?o ?g. }
- W2158308356 endingPage "1201" @default.
- W2158308356 startingPage "1188" @default.
- W2158308356 abstract "Modeling the haemodynamic response in functional magnetic resonance (fMRI) experiments is an important aspect of the analysis of functional neuroimages. This has been done in the past using parametric response function, from a limited family. In this contribution, we adopt a semi-parametric approach based on finite impulse response (FIR) filters. In order to cope with the increase in the number of degrees of freedom, we introduce a Gaussian process prior on the filter parameters. We show how to carry on the analysis by incorporating prior knowledge on the filters, optimizing hyper-parameters using the evidence framework, or sampling using a Markov Chain Monte Carlo (MCMC) approach. We present a comparison of our model with standard haemodynamic response kernels on simulated data, and perform a full analysis of data acquired during an experiment involving visual stimulation." @default.
- W2158308356 created "2016-06-24" @default.
- W2158308356 creator A5018292103 @default.
- W2158308356 creator A5065257553 @default.
- W2158308356 creator A5078821875 @default.
- W2158308356 date "2000-01-01" @default.
- W2158308356 modified "2023-10-07" @default.
- W2158308356 title "Modeling the hemodynamic response in fMRI using smooth FIR filters" @default.
- W2158308356 cites W1489119587 @default.
- W2158308356 cites W1523767002 @default.
- W2158308356 cites W1567512734 @default.
- W2158308356 cites W1657213141 @default.
- W2158308356 cites W1972223851 @default.
- W2158308356 cites W1973831046 @default.
- W2158308356 cites W1997232604 @default.
- W2158308356 cites W2025283285 @default.
- W2158308356 cites W2038259574 @default.
- W2158308356 cites W2049747737 @default.
- W2158308356 cites W2083834416 @default.
- W2158308356 cites W2093366270 @default.
- W2158308356 cites W2099581737 @default.
- W2158308356 cites W2107187638 @default.
- W2158308356 cites W2111051539 @default.
- W2158308356 cites W2111609296 @default.
- W2158308356 cites W2123586737 @default.
- W2158308356 cites W2142307167 @default.
- W2158308356 cites W2147412935 @default.
- W2158308356 cites W2151811639 @default.
- W2158308356 cites W2493977830 @default.
- W2158308356 cites W4240612684 @default.
- W2158308356 cites W4247964384 @default.
- W2158308356 cites W4250381129 @default.
- W2158308356 cites W4250725391 @default.
- W2158308356 cites W4255944592 @default.
- W2158308356 cites W4255975151 @default.
- W2158308356 doi "https://doi.org/10.1109/42.897811" @default.
- W2158308356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11212367" @default.
- W2158308356 hasPublicationYear "2000" @default.
- W2158308356 type Work @default.
- W2158308356 sameAs 2158308356 @default.
- W2158308356 citedByCount "192" @default.
- W2158308356 countsByYear W21583083562012 @default.
- W2158308356 countsByYear W21583083562013 @default.
- W2158308356 countsByYear W21583083562014 @default.
- W2158308356 countsByYear W21583083562015 @default.
- W2158308356 countsByYear W21583083562016 @default.
- W2158308356 countsByYear W21583083562017 @default.
- W2158308356 countsByYear W21583083562018 @default.
- W2158308356 countsByYear W21583083562019 @default.
- W2158308356 countsByYear W21583083562020 @default.
- W2158308356 countsByYear W21583083562021 @default.
- W2158308356 countsByYear W21583083562022 @default.
- W2158308356 countsByYear W21583083562023 @default.
- W2158308356 crossrefType "journal-article" @default.
- W2158308356 hasAuthorship W2158308356A5018292103 @default.
- W2158308356 hasAuthorship W2158308356A5065257553 @default.
- W2158308356 hasAuthorship W2158308356A5078821875 @default.
- W2158308356 hasBestOaLocation W21583083562 @default.
- W2158308356 hasConcept C105795698 @default.
- W2158308356 hasConcept C106131492 @default.
- W2158308356 hasConcept C107673813 @default.
- W2158308356 hasConcept C111350023 @default.
- W2158308356 hasConcept C11413529 @default.
- W2158308356 hasConcept C117251300 @default.
- W2158308356 hasConcept C121332964 @default.
- W2158308356 hasConcept C126838900 @default.
- W2158308356 hasConcept C134306372 @default.
- W2158308356 hasConcept C153180895 @default.
- W2158308356 hasConcept C154945302 @default.
- W2158308356 hasConcept C163716315 @default.
- W2158308356 hasConcept C169760540 @default.
- W2158308356 hasConcept C19499675 @default.
- W2158308356 hasConcept C198386975 @default.
- W2158308356 hasConcept C26170363 @default.
- W2158308356 hasConcept C2777953023 @default.
- W2158308356 hasConcept C2779226451 @default.
- W2158308356 hasConcept C31972630 @default.
- W2158308356 hasConcept C33923547 @default.
- W2158308356 hasConcept C41008148 @default.
- W2158308356 hasConcept C61326573 @default.
- W2158308356 hasConcept C62520636 @default.
- W2158308356 hasConcept C71924100 @default.
- W2158308356 hasConcept C72279823 @default.
- W2158308356 hasConcept C84393581 @default.
- W2158308356 hasConcept C86803240 @default.
- W2158308356 hasConceptScore W2158308356C105795698 @default.
- W2158308356 hasConceptScore W2158308356C106131492 @default.
- W2158308356 hasConceptScore W2158308356C107673813 @default.
- W2158308356 hasConceptScore W2158308356C111350023 @default.
- W2158308356 hasConceptScore W2158308356C11413529 @default.
- W2158308356 hasConceptScore W2158308356C117251300 @default.
- W2158308356 hasConceptScore W2158308356C121332964 @default.
- W2158308356 hasConceptScore W2158308356C126838900 @default.
- W2158308356 hasConceptScore W2158308356C134306372 @default.
- W2158308356 hasConceptScore W2158308356C153180895 @default.
- W2158308356 hasConceptScore W2158308356C154945302 @default.
- W2158308356 hasConceptScore W2158308356C163716315 @default.
- W2158308356 hasConceptScore W2158308356C169760540 @default.