Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158525989> ?p ?o ?g. }
- W2158525989 endingPage "463" @default.
- W2158525989 startingPage "409" @default.
- W2158525989 abstract "Abstract Greene's Theorem relating chain and antichain families with maximal cardinalities in a poset (partially ordered set) was motivated by the Robinson-Schensted correspondence. This correspondence is a bijection between permutations and pairs (P, Q) of standard Young tableaux having the same shape. This bijection originated in the representation theory of the symmetric group. The underlying combinatorics is very deep and also takes roots in the theory of symmetric functions and algebraic geometry. The purpose of this talk is threefold. First we give a brief summary of the principal combinatorial properties of the Robinson-Schensted correspondence, especially those having an order-theoretical flavor. Second we shed some light on its relationship with poset theory and Greene's Theorem. The third purpose of this talk is to solve the following open problem : give an interpretation of the value located in the (i, j) cell of the Young tableaux P and Q. This “local” characterization of the correspondence is completely symmetric in rows and columns and requires the concept of grids and extendable grids. These last results can be extended to arbitrary posets. Complete proofs will be given elsewhere. Resume Le theoreme de Greene sur les cardinaux maximaux des families de chaines et d'antichaines extraites d'un ensemble (partiellement) ordonne a son origine dans la correspondance de Robinson-Schensted. Cette correspondance est une bijection entre les permutations et les paires (P, Q) de tableaux standards de Young de měme forme. Cette bijection provient en fait de la theorie des representations du groupe symetrique. La combinatoire sous-jacente est fort riche et prend egalement racine dans la theorie des fonctions symetriques et en geometrie algebrique. Le but de cet expose est triple. D'abord nous donnons un bref apercu des proprietes combinatoires les plus classiques de cette correspondance, notamment celles en relation avec la methodologie des ensembles ordonnes. Le deuxieme but de cet expose est de faire sentir a un public motive par les ensembles ordonnes l'interet de mieux connaitre cette merveilleuse correspondance. Enfin une troisieme partie est consacree a la resolution d'un probleme ouvert : dormer une interpretation symetrique en lignes et colonnes de la valeur situee dans la case (i, j) des tableaux de Young P et Q. Cette definition “locale” de la correspondance de Robinson-Schensted utilise les nouveaux concepts de grille et de grille prolongeable. Ces dernieres idees peuvent ětre etendues aux ensembles ordonnes quelconques. Les preuves completes de ces nouveaux resultants seront donnees ailleurs." @default.
- W2158525989 created "2016-06-24" @default.
- W2158525989 creator A5034846169 @default.
- W2158525989 date "1984-01-01" @default.
- W2158525989 modified "2023-09-23" @default.
- W2158525989 title "Chain and Antichain Families Grids and Young Tableaux" @default.
- W2158525989 cites W1034503703 @default.
- W2158525989 cites W156450035 @default.
- W2158525989 cites W1575331340 @default.
- W2158525989 cites W1582044446 @default.
- W2158525989 cites W1603661545 @default.
- W2158525989 cites W175768808 @default.
- W2158525989 cites W1975605482 @default.
- W2158525989 cites W1977466683 @default.
- W2158525989 cites W1979850889 @default.
- W2158525989 cites W1980142468 @default.
- W2158525989 cites W1986929557 @default.
- W2158525989 cites W1996300289 @default.
- W2158525989 cites W1996722137 @default.
- W2158525989 cites W1997009960 @default.
- W2158525989 cites W1998937356 @default.
- W2158525989 cites W2006479146 @default.
- W2158525989 cites W2007561695 @default.
- W2158525989 cites W2008592089 @default.
- W2158525989 cites W2010883652 @default.
- W2158525989 cites W2019544232 @default.
- W2158525989 cites W2021115540 @default.
- W2158525989 cites W2032362260 @default.
- W2158525989 cites W2042626467 @default.
- W2158525989 cites W2045343456 @default.
- W2158525989 cites W2045527623 @default.
- W2158525989 cites W2048793086 @default.
- W2158525989 cites W2049081984 @default.
- W2158525989 cites W2050039992 @default.
- W2158525989 cites W2052049441 @default.
- W2158525989 cites W2053554440 @default.
- W2158525989 cites W2066182107 @default.
- W2158525989 cites W2067300381 @default.
- W2158525989 cites W2069893028 @default.
- W2158525989 cites W2076616949 @default.
- W2158525989 cites W2077309624 @default.
- W2158525989 cites W2079430407 @default.
- W2158525989 cites W2079862276 @default.
- W2158525989 cites W2093697442 @default.
- W2158525989 cites W2094031059 @default.
- W2158525989 cites W2094675598 @default.
- W2158525989 cites W2103830149 @default.
- W2158525989 cites W2110730333 @default.
- W2158525989 cites W2114443014 @default.
- W2158525989 cites W2128430147 @default.
- W2158525989 cites W2145596344 @default.
- W2158525989 cites W2168316830 @default.
- W2158525989 cites W2267867414 @default.
- W2158525989 cites W2314376244 @default.
- W2158525989 cites W2320951892 @default.
- W2158525989 cites W2330683669 @default.
- W2158525989 cites W2583196110 @default.
- W2158525989 cites W2607200564 @default.
- W2158525989 cites W3021709410 @default.
- W2158525989 cites W3084055896 @default.
- W2158525989 cites W4213060883 @default.
- W2158525989 cites W4232274906 @default.
- W2158525989 cites W4235936977 @default.
- W2158525989 cites W4243057877 @default.
- W2158525989 cites W4254807835 @default.
- W2158525989 cites W48073001 @default.
- W2158525989 cites W85975324 @default.
- W2158525989 doi "https://doi.org/10.1016/s0304-0208(08)73835-0" @default.
- W2158525989 hasPublicationYear "1984" @default.
- W2158525989 type Work @default.
- W2158525989 sameAs 2158525989 @default.
- W2158525989 citedByCount "14" @default.
- W2158525989 countsByYear W21585259892012 @default.
- W2158525989 countsByYear W21585259892013 @default.
- W2158525989 countsByYear W21585259892014 @default.
- W2158525989 countsByYear W21585259892015 @default.
- W2158525989 countsByYear W21585259892017 @default.
- W2158525989 countsByYear W21585259892021 @default.
- W2158525989 crossrefType "book-chapter" @default.
- W2158525989 hasAuthorship W2158525989A5034846169 @default.
- W2158525989 hasConcept C114614502 @default.
- W2158525989 hasConcept C121332964 @default.
- W2158525989 hasConcept C1276947 @default.
- W2158525989 hasConcept C136134351 @default.
- W2158525989 hasConcept C180645754 @default.
- W2158525989 hasConcept C199185054 @default.
- W2158525989 hasConcept C33923547 @default.
- W2158525989 hasConcept C41008148 @default.
- W2158525989 hasConcept C53553401 @default.
- W2158525989 hasConcept C95457728 @default.
- W2158525989 hasConceptScore W2158525989C114614502 @default.
- W2158525989 hasConceptScore W2158525989C121332964 @default.
- W2158525989 hasConceptScore W2158525989C1276947 @default.
- W2158525989 hasConceptScore W2158525989C136134351 @default.
- W2158525989 hasConceptScore W2158525989C180645754 @default.
- W2158525989 hasConceptScore W2158525989C199185054 @default.
- W2158525989 hasConceptScore W2158525989C33923547 @default.
- W2158525989 hasConceptScore W2158525989C41008148 @default.