Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158595370> ?p ?o ?g. }
- W2158595370 endingPage "1739" @default.
- W2158595370 startingPage "1721" @default.
- W2158595370 abstract "Abstract. This paper is the second part in a series of two articles, which aims at presenting a data-driven modeling strategy for forecasting wildfire spread scenarios based on the assimilation of the observed fire front location and on the sequential correction of model parameters or model state. This model relies on an estimation of the local rate of fire spread (ROS) as a function of environmental conditions based on Rothermel's semi-empirical formulation, in order to propagate the fire front with an Eulerian front-tracking simulator. In Part I, a data assimilation (DA) system based on an ensemble Kalman filter (EnKF) was implemented to provide a spatially uniform correction of biomass fuel and wind parameters and thereby, produce an improved forecast of the wildfire behavior (addressing uncertainties in the input parameters of the ROS model only). In Part II, the objective of the EnKF algorithm is to sequentially update the two-dimensional coordinates of the markers along the discretized fire front, in order to provide a spatially distributed correction of the fire front location and thereby, a more reliable initial condition for further model time-integration (addressing all sources of uncertainties in the ROS model). The resulting prototype data-driven wildfire spread simulator is first evaluated in a series of verification tests using synthetically generated observations; tests include representative cases with spatially varying biomass properties and temporally varying wind conditions. In order to properly account for uncertainties during the EnKF update step and to accurately represent error correlations along the fireline, it is shown that members of the EnKF ensemble must be generated through variations in estimates of the fire's initial location as well as through variations in the parameters of the ROS model. The performance of the prototype simulator based on state estimation (SE) or parameter estimation (PE) is then evaluated by comparison with data taken from a reduced-scale controlled grassland fire experiment. Results indicate that data-driven simulations are capable of correcting inaccurate predictions of the fire front location and of subsequently providing an optimized forecast of the wildfire behavior at future lead times. The complementary benefits of both PE and SE approaches, in terms of analysis and forecast performance, are also emphasized. In particular, it is found that the size of the assimilation window must be specified adequately with the persistence of the model initial condition and/or with the temporal and spatial variability of the environmental conditions in order to track sudden changes in wildfire behavior. The present prototype data-driven forecast system is still at an early stage of development. In this regard, this preliminary investigation provides valuable information on how to combine observations with a fire spread model in an efficient way, as well as guidelines to design the future system evolution in order to meet the operational requirements of wildfire spread monitoring." @default.
- W2158595370 created "2016-06-24" @default.
- W2158595370 creator A5019560085 @default.
- W2158595370 creator A5034764577 @default.
- W2158595370 creator A5043791437 @default.
- W2158595370 creator A5050489450 @default.
- W2158595370 creator A5064586602 @default.
- W2158595370 date "2015-08-04" @default.
- W2158595370 modified "2023-10-02" @default.
- W2158595370 title "Towards predictive data-driven simulations of wildfire spread – Part II: Ensemble Kalman Filter for the state estimation of a front-tracking simulator of wildfire spread" @default.
- W2158595370 cites W1483839007 @default.
- W2158595370 cites W1500646673 @default.
- W2158595370 cites W1531419578 @default.
- W2158595370 cites W1537925081 @default.
- W2158595370 cites W1568603120 @default.
- W2158595370 cites W1985993371 @default.
- W2158595370 cites W1988435743 @default.
- W2158595370 cites W2005891869 @default.
- W2158595370 cites W2020785630 @default.
- W2158595370 cites W2027971388 @default.
- W2158595370 cites W2035182895 @default.
- W2158595370 cites W2043347079 @default.
- W2158595370 cites W2052936910 @default.
- W2158595370 cites W2053535523 @default.
- W2158595370 cites W2055986463 @default.
- W2158595370 cites W2065593707 @default.
- W2158595370 cites W2086763105 @default.
- W2158595370 cites W2096195489 @default.
- W2158595370 cites W2099722563 @default.
- W2158595370 cites W2105056323 @default.
- W2158595370 cites W2122801340 @default.
- W2158595370 cites W2150650993 @default.
- W2158595370 cites W2159896542 @default.
- W2158595370 cites W2179860363 @default.
- W2158595370 cites W2498637722 @default.
- W2158595370 cites W2804210914 @default.
- W2158595370 cites W2952178996 @default.
- W2158595370 cites W3098105755 @default.
- W2158595370 cites W4240692197 @default.
- W2158595370 doi "https://doi.org/10.5194/nhess-15-1721-2015" @default.
- W2158595370 hasPublicationYear "2015" @default.
- W2158595370 type Work @default.
- W2158595370 sameAs 2158595370 @default.
- W2158595370 citedByCount "39" @default.
- W2158595370 countsByYear W21585953702015 @default.
- W2158595370 countsByYear W21585953702016 @default.
- W2158595370 countsByYear W21585953702017 @default.
- W2158595370 countsByYear W21585953702018 @default.
- W2158595370 countsByYear W21585953702019 @default.
- W2158595370 countsByYear W21585953702020 @default.
- W2158595370 countsByYear W21585953702021 @default.
- W2158595370 countsByYear W21585953702022 @default.
- W2158595370 countsByYear W21585953702023 @default.
- W2158595370 crossrefType "journal-article" @default.
- W2158595370 hasAuthorship W2158595370A5019560085 @default.
- W2158595370 hasAuthorship W2158595370A5034764577 @default.
- W2158595370 hasAuthorship W2158595370A5043791437 @default.
- W2158595370 hasAuthorship W2158595370A5050489450 @default.
- W2158595370 hasAuthorship W2158595370A5064586602 @default.
- W2158595370 hasBestOaLocation W21585953701 @default.
- W2158595370 hasConcept C134306372 @default.
- W2158595370 hasConcept C153294291 @default.
- W2158595370 hasConcept C154945302 @default.
- W2158595370 hasConcept C157286648 @default.
- W2158595370 hasConcept C15744967 @default.
- W2158595370 hasConcept C161067210 @default.
- W2158595370 hasConcept C19417346 @default.
- W2158595370 hasConcept C205649164 @default.
- W2158595370 hasConcept C206833254 @default.
- W2158595370 hasConcept C24552861 @default.
- W2158595370 hasConcept C2775936607 @default.
- W2158595370 hasConcept C33923547 @default.
- W2158595370 hasConcept C37914503 @default.
- W2158595370 hasConcept C39432304 @default.
- W2158595370 hasConcept C41008148 @default.
- W2158595370 hasConcept C43058520 @default.
- W2158595370 hasConcept C44154836 @default.
- W2158595370 hasConcept C53469067 @default.
- W2158595370 hasConcept C73000952 @default.
- W2158595370 hasConcept C79334102 @default.
- W2158595370 hasConceptScore W2158595370C134306372 @default.
- W2158595370 hasConceptScore W2158595370C153294291 @default.
- W2158595370 hasConceptScore W2158595370C154945302 @default.
- W2158595370 hasConceptScore W2158595370C157286648 @default.
- W2158595370 hasConceptScore W2158595370C15744967 @default.
- W2158595370 hasConceptScore W2158595370C161067210 @default.
- W2158595370 hasConceptScore W2158595370C19417346 @default.
- W2158595370 hasConceptScore W2158595370C205649164 @default.
- W2158595370 hasConceptScore W2158595370C206833254 @default.
- W2158595370 hasConceptScore W2158595370C24552861 @default.
- W2158595370 hasConceptScore W2158595370C2775936607 @default.
- W2158595370 hasConceptScore W2158595370C33923547 @default.
- W2158595370 hasConceptScore W2158595370C37914503 @default.
- W2158595370 hasConceptScore W2158595370C39432304 @default.
- W2158595370 hasConceptScore W2158595370C41008148 @default.
- W2158595370 hasConceptScore W2158595370C43058520 @default.
- W2158595370 hasConceptScore W2158595370C44154836 @default.
- W2158595370 hasConceptScore W2158595370C53469067 @default.