Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158703918> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2158703918 endingPage "1191" @default.
- W2158703918 startingPage "1171" @default.
- W2158703918 abstract "Dynamic job shop scheduling has been proven to be an intractable problem for analytical procedures. Recent advances in computing technology, especially in artificial intelligence, have alleviated this problem by intelligently restricting the search space considered, thus opening the possibility of obtaining better results. Researchers have used various techniques that were developed under the general rubric of artificial intelligence to solve job shop scheduling problems. The most common of these have been expert systems, genetic algorithms and machine learning. Of these, we identify machine learning and genetic algorithms to be promising for scheduling applications in a job shop. In this paper, we propose to combine complementarily the strengths of genetic algorithms and induced decision trees, a machine learning technique, to develop a job shop scheduling system. Empirical results, using machine learning for releasing jobs into the shop floor and a genetic algorithm to dispatch jobs at each machine, are promising." @default.
- W2158703918 created "2016-06-24" @default.
- W2158703918 creator A5016977510 @default.
- W2158703918 creator A5051048191 @default.
- W2158703918 creator A5054780905 @default.
- W2158703918 date "1997-04-01" @default.
- W2158703918 modified "2023-10-18" @default.
- W2158703918 title "Job shop scheduling with a genetic algorithm and machine learning" @default.
- W2158703918 doi "https://doi.org/10.1080/002075497195605" @default.
- W2158703918 hasPublicationYear "1997" @default.
- W2158703918 type Work @default.
- W2158703918 sameAs 2158703918 @default.
- W2158703918 citedByCount "139" @default.
- W2158703918 countsByYear W21587039182012 @default.
- W2158703918 countsByYear W21587039182013 @default.
- W2158703918 countsByYear W21587039182014 @default.
- W2158703918 countsByYear W21587039182015 @default.
- W2158703918 countsByYear W21587039182016 @default.
- W2158703918 countsByYear W21587039182017 @default.
- W2158703918 countsByYear W21587039182018 @default.
- W2158703918 countsByYear W21587039182019 @default.
- W2158703918 countsByYear W21587039182020 @default.
- W2158703918 countsByYear W21587039182021 @default.
- W2158703918 countsByYear W21587039182022 @default.
- W2158703918 countsByYear W21587039182023 @default.
- W2158703918 crossrefType "journal-article" @default.
- W2158703918 hasAuthorship W2158703918A5016977510 @default.
- W2158703918 hasAuthorship W2158703918A5051048191 @default.
- W2158703918 hasAuthorship W2158703918A5054780905 @default.
- W2158703918 hasConcept C111919701 @default.
- W2158703918 hasConcept C119857082 @default.
- W2158703918 hasConcept C126255220 @default.
- W2158703918 hasConcept C127413603 @default.
- W2158703918 hasConcept C13736549 @default.
- W2158703918 hasConcept C154945302 @default.
- W2158703918 hasConcept C158336966 @default.
- W2158703918 hasConcept C206729178 @default.
- W2158703918 hasConcept C2777243215 @default.
- W2158703918 hasConcept C33923547 @default.
- W2158703918 hasConcept C41008148 @default.
- W2158703918 hasConcept C55416958 @default.
- W2158703918 hasConcept C68387754 @default.
- W2158703918 hasConcept C8880873 @default.
- W2158703918 hasConceptScore W2158703918C111919701 @default.
- W2158703918 hasConceptScore W2158703918C119857082 @default.
- W2158703918 hasConceptScore W2158703918C126255220 @default.
- W2158703918 hasConceptScore W2158703918C127413603 @default.
- W2158703918 hasConceptScore W2158703918C13736549 @default.
- W2158703918 hasConceptScore W2158703918C154945302 @default.
- W2158703918 hasConceptScore W2158703918C158336966 @default.
- W2158703918 hasConceptScore W2158703918C206729178 @default.
- W2158703918 hasConceptScore W2158703918C2777243215 @default.
- W2158703918 hasConceptScore W2158703918C33923547 @default.
- W2158703918 hasConceptScore W2158703918C41008148 @default.
- W2158703918 hasConceptScore W2158703918C55416958 @default.
- W2158703918 hasConceptScore W2158703918C68387754 @default.
- W2158703918 hasConceptScore W2158703918C8880873 @default.
- W2158703918 hasIssue "4" @default.
- W2158703918 hasLocation W21587039181 @default.
- W2158703918 hasOpenAccess W2158703918 @default.
- W2158703918 hasPrimaryLocation W21587039181 @default.
- W2158703918 hasRelatedWork W1971611466 @default.
- W2158703918 hasRelatedWork W2022848409 @default.
- W2158703918 hasRelatedWork W2116650023 @default.
- W2158703918 hasRelatedWork W2153642003 @default.
- W2158703918 hasRelatedWork W2890170050 @default.
- W2158703918 hasRelatedWork W2905064436 @default.
- W2158703918 hasRelatedWork W4313800012 @default.
- W2158703918 hasRelatedWork W2152918703 @default.
- W2158703918 hasRelatedWork W2167350865 @default.
- W2158703918 hasRelatedWork W2189083639 @default.
- W2158703918 hasVolume "35" @default.
- W2158703918 isParatext "false" @default.
- W2158703918 isRetracted "false" @default.
- W2158703918 magId "2158703918" @default.
- W2158703918 workType "article" @default.