Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158808512> ?p ?o ?g. }
- W2158808512 endingPage "40" @default.
- W2158808512 startingPage "20" @default.
- W2158808512 abstract "Geofluids (2010) 10 , 20–40 Abstract We present a thermodynamic model for mineral dissolution in aqueous fluids at elevated temperatures and pressures, based on intrinsic thermal properties and variations of volumetric properties of the aqueous solvent. The standard thermodynamic properties of mineral dissolution into aqueous fluid consist of two contributions: one from the energy of transformation from the solid to the hydrated‐species state and the other from the compression of solvent molecules during the formation of a hydration shell. The latter contribution has the dimension of the generalized Krichevskii parameter. This approach describes the energetics of solvation more accurately than does the Born electrostatic theory and can be extended beyond the limits of experimental measurements of the dielectric constant of H 2 O. The new model has been calibrated by experimental solubilities of quartz, corundum, rutile, calcite, apatite, fluorite and portlandite in pure H 2 O at temperatures up to 1100°C and pressures up to 20 kbar. All minerals show a steady increase in solubility along constant geothermal gradients or water isochores. By contrast, isobaric solubilities initially increase with rising temperature but then decline above 200–400°C. This retrograde behavior is caused by variations in the isobaric expansivity of the aqueous solvent, which approaches infinity at its critical point. Oxide minerals predominantly dissolve to neutral species; so, their dissolution energetics involve a relatively small contribution from the solvent volumetric properties and their retrograde solubilities are restricted to a relatively narrow window of temperature and pressure near the critical point of water. By contrast, Ca‐bearing minerals dissolve to a variety of charged species; so, the energetics of their dissolution reactions involve a comparatively large contribution from volume changes of the aqueous solvent and their isobaric retrograde solubility spans nearly all metamorphic and magmatic conditions. These features correlate with and can be predicted from the standard partial molar volumes of aqueous species. The thermodynamic model can be used over much wider range of settings for terrestrial fluid–rock interaction than has previously been possible. To illustrate, it is integrated with transport theory to show quantitatively that integrated fluid fluxes characteristic of crustal shear zones are capable of precipitating quartz or calcite veins from low‐ and medium‐grade metamorphic conditions, at a geothermal gradient of 20°C km −1 . For subduction zones, modeled by a geotherm of 7°C km −1 , the required fluid fluxes are one to two orders of magnitude lower and predict enhanced efficiency of mass transfer and metasomatic precipitation in comparison with orogenic settings. The new model thus can be applied to shallow hydrothermal, metamorphic, magmatic and subduction fluids, and for retrieval of dependent thermodynamic properties for mass transfer or geodynamic modeling." @default.
- W2158808512 created "2016-06-24" @default.
- W2158808512 creator A5048828311 @default.
- W2158808512 creator A5084913703 @default.
- W2158808512 date "2010-05-01" @default.
- W2158808512 modified "2023-10-17" @default.
- W2158808512 title "Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems" @default.
- W2158808512 cites W101687110 @default.
- W2158808512 cites W1830358639 @default.
- W2158808512 cites W1963729224 @default.
- W2158808512 cites W1964454713 @default.
- W2158808512 cites W1967540505 @default.
- W2158808512 cites W1967907571 @default.
- W2158808512 cites W1970207830 @default.
- W2158808512 cites W1970851365 @default.
- W2158808512 cites W1972030428 @default.
- W2158808512 cites W1974579410 @default.
- W2158808512 cites W1976773605 @default.
- W2158808512 cites W1978575630 @default.
- W2158808512 cites W1979206471 @default.
- W2158808512 cites W1981622084 @default.
- W2158808512 cites W1983168351 @default.
- W2158808512 cites W1984402056 @default.
- W2158808512 cites W1987652319 @default.
- W2158808512 cites W1990415887 @default.
- W2158808512 cites W1990536516 @default.
- W2158808512 cites W1990572818 @default.
- W2158808512 cites W1990640466 @default.
- W2158808512 cites W1990844477 @default.
- W2158808512 cites W1990915444 @default.
- W2158808512 cites W1991585461 @default.
- W2158808512 cites W1992356279 @default.
- W2158808512 cites W1993181676 @default.
- W2158808512 cites W1995607517 @default.
- W2158808512 cites W1995722436 @default.
- W2158808512 cites W1998959140 @default.
- W2158808512 cites W2000768310 @default.
- W2158808512 cites W2001662705 @default.
- W2158808512 cites W2002555513 @default.
- W2158808512 cites W2003685350 @default.
- W2158808512 cites W2006466583 @default.
- W2158808512 cites W2008868406 @default.
- W2158808512 cites W2009820531 @default.
- W2158808512 cites W2010129115 @default.
- W2158808512 cites W2011136609 @default.
- W2158808512 cites W2011141022 @default.
- W2158808512 cites W2011816379 @default.
- W2158808512 cites W2012274702 @default.
- W2158808512 cites W2012810284 @default.
- W2158808512 cites W2013783818 @default.
- W2158808512 cites W2016675857 @default.
- W2158808512 cites W2016740292 @default.
- W2158808512 cites W2019924983 @default.
- W2158808512 cites W2020384898 @default.
- W2158808512 cites W2020503845 @default.
- W2158808512 cites W2021185122 @default.
- W2158808512 cites W2021684806 @default.
- W2158808512 cites W2025737752 @default.
- W2158808512 cites W2030134340 @default.
- W2158808512 cites W2031892116 @default.
- W2158808512 cites W2032029123 @default.
- W2158808512 cites W2038075102 @default.
- W2158808512 cites W2040292380 @default.
- W2158808512 cites W2042149789 @default.
- W2158808512 cites W2044436020 @default.
- W2158808512 cites W2044486502 @default.
- W2158808512 cites W2044932928 @default.
- W2158808512 cites W2045856283 @default.
- W2158808512 cites W2047716248 @default.
- W2158808512 cites W2047883878 @default.
- W2158808512 cites W2048050228 @default.
- W2158808512 cites W2048233591 @default.
- W2158808512 cites W2049960244 @default.
- W2158808512 cites W2050815362 @default.
- W2158808512 cites W2051291587 @default.
- W2158808512 cites W2052044660 @default.
- W2158808512 cites W2052090210 @default.
- W2158808512 cites W2054448755 @default.
- W2158808512 cites W2057455339 @default.
- W2158808512 cites W2059172000 @default.
- W2158808512 cites W2060027402 @default.
- W2158808512 cites W2060165901 @default.
- W2158808512 cites W2061849395 @default.
- W2158808512 cites W2062957061 @default.
- W2158808512 cites W2063676455 @default.
- W2158808512 cites W2065020959 @default.
- W2158808512 cites W2065702839 @default.
- W2158808512 cites W2065756075 @default.
- W2158808512 cites W2066479861 @default.
- W2158808512 cites W2066527077 @default.
- W2158808512 cites W2066866139 @default.
- W2158808512 cites W2069879477 @default.
- W2158808512 cites W2075992470 @default.
- W2158808512 cites W2077643850 @default.
- W2158808512 cites W2079650581 @default.
- W2158808512 cites W2081258920 @default.
- W2158808512 cites W2082773897 @default.
- W2158808512 cites W2087251279 @default.