Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158918975> ?p ?o ?g. }
- W2158918975 endingPage "156" @default.
- W2158918975 startingPage "141" @default.
- W2158918975 abstract "Summary: The study is intended as a contribution to assessing the value of digital image data for semi-automatic analysis for classifying land cover and tree species and was carried out in the framework of the DGPF-project. Sensor specific strengths of ADS40-2 nd , Quattro DigiCAM, DMC, JAS-150, Ultracam-X, and RMK-Top15 cameras and weakness for classification purposes are presented and shortly discussed. The first approach is based on a maximum likelihood method in combination with a decision tree and produces 13 land cover classes. The second approach is based on logistic regression models and produces eight tree species classes. The classified images were visually assessed and quantitatively analyzed. The accuracy assessment reveals that in both approaches similar classification results are obtained by all sensors with overall Kappa coefficients between 0.6 and 0.9. However, a real sensor comparison was not possible since the image data was acquired at different dates. Thus, some variations in classification results are due to phenological differences and different illumination and atmospheric conditions. It is planned for the future that the classifications of the first approach will be adjusted to the characteristics of each sensor. In the second approach, further work is needed to improve distinguishing non-dominant, small and covered deciduous tree species. Zusammenfassung: Potenzial digitaler Sensoren zur Klassifizierung der Landbedeckung und Baumarten - eine Fallstudie im Rahmen des DGPF-Projektes. Anhand der Bilddaten aus den Kamerasystemen ADS40-2 nd , Quattro DigiCAM, DMC, JAS-150, Ultracam-X, und RMK-Top15 wurden zwei Klassifikationsverfahren (Maximum Likelihood und logistische Regression) getestet. Dabei wurden sensor-spezifische Eigenschaften erlautert, sowie die Starken und Schwachen der einzelnen Systeme aufgezeigt. Die Resultate wurden visuell und quantitativ bewertet. Direkte Sensorvergleiche erwiesen sich dabei als schwierig, da zum Aufnahmezeitpunkt der einzelnen Bilddaten sowohl eine unterschiedliche Vegetationsentwicklung wie auch Unterschiede in den Beleuchtungs- und atmospharischen Verhaltnissen vorherrschten. Quantitative Analysen zeigen, dass sich mit jedem Kamerasysteme sehr ahnlich gute Resultate erzielen liessen. Das erste Verfahren zeigt fur 13 Landnutzungsklassen Kappa Koeffizienten von gut 0.6 bei allen verwendeten Systemen. Allerdings unterscheidet sich die Genauigkeit der einzelnen spezifischen Klassen wie Mais oder Kartoffeln fur die unterschiedlichen Kameras. Hierzu soll in weiteren Analysen das Klassifikationsverfahren an die jeweiligen Kameras angepasst werden. Fur das zweite Verfahren liegt der Kappa Koeffizient fur 8 Baumarten zwischen 0.7 und 0.9. Bei diesem Verfahren soll in zukunftigen Analysen die Genauigkeit der Erkennung von nicht dominanten, kleinen und verdeckten Baumarten erhoht werden." @default.
- W2158918975 created "2016-06-24" @default.
- W2158918975 creator A5023613938 @default.
- W2158918975 creator A5046854375 @default.
- W2158918975 creator A5064250130 @default.
- W2158918975 creator A5087039641 @default.
- W2158918975 creator A5091138556 @default.
- W2158918975 date "2010-05-01" @default.
- W2158918975 modified "2023-09-26" @default.
- W2158918975 title "Potential of Digital Sensors for Land Cover and Tree Species Classifications A Case Study in the Framework of the DGPF-Project" @default.
- W2158918975 cites W1484731175 @default.
- W2158918975 cites W1519293872 @default.
- W2158918975 cites W1973948212 @default.
- W2158918975 cites W1991847295 @default.
- W2158918975 cites W2005073772 @default.
- W2158918975 cites W2027230514 @default.
- W2158918975 cites W2056380340 @default.
- W2158918975 cites W2065447829 @default.
- W2158918975 cites W2079427371 @default.
- W2158918975 cites W2081096371 @default.
- W2158918975 cites W2088805832 @default.
- W2158918975 cites W2101320768 @default.
- W2158918975 cites W2105325887 @default.
- W2158918975 cites W2105536892 @default.
- W2158918975 cites W2121717544 @default.
- W2158918975 cites W2121721022 @default.
- W2158918975 cites W2125942819 @default.
- W2158918975 cites W2168809519 @default.
- W2158918975 cites W2171738448 @default.
- W2158918975 cites W2312997001 @default.
- W2158918975 cites W2799061466 @default.
- W2158918975 cites W2981849677 @default.
- W2158918975 cites W3157472985 @default.
- W2158918975 cites W647858393 @default.
- W2158918975 cites W2467153952 @default.
- W2158918975 cites W3159512266 @default.
- W2158918975 doi "https://doi.org/10.1127/1432-8364/2010/0046" @default.
- W2158918975 hasPublicationYear "2010" @default.
- W2158918975 type Work @default.
- W2158918975 sameAs 2158918975 @default.
- W2158918975 citedByCount "19" @default.
- W2158918975 countsByYear W21589189752012 @default.
- W2158918975 countsByYear W21589189752013 @default.
- W2158918975 countsByYear W21589189752014 @default.
- W2158918975 countsByYear W21589189752016 @default.
- W2158918975 countsByYear W21589189752017 @default.
- W2158918975 countsByYear W21589189752018 @default.
- W2158918975 countsByYear W21589189752019 @default.
- W2158918975 crossrefType "journal-article" @default.
- W2158918975 hasAuthorship W2158918975A5023613938 @default.
- W2158918975 hasAuthorship W2158918975A5046854375 @default.
- W2158918975 hasAuthorship W2158918975A5064250130 @default.
- W2158918975 hasAuthorship W2158918975A5087039641 @default.
- W2158918975 hasAuthorship W2158918975A5091138556 @default.
- W2158918975 hasConcept C113174947 @default.
- W2158918975 hasConcept C124101348 @default.
- W2158918975 hasConcept C127413603 @default.
- W2158918975 hasConcept C134306372 @default.
- W2158918975 hasConcept C147176958 @default.
- W2158918975 hasConcept C153180895 @default.
- W2158918975 hasConcept C154945302 @default.
- W2158918975 hasConcept C18903297 @default.
- W2158918975 hasConcept C205649164 @default.
- W2158918975 hasConcept C2780428219 @default.
- W2158918975 hasConcept C2780648208 @default.
- W2158918975 hasConcept C33283694 @default.
- W2158918975 hasConcept C33923547 @default.
- W2158918975 hasConcept C41008148 @default.
- W2158918975 hasConcept C4792198 @default.
- W2158918975 hasConcept C62649853 @default.
- W2158918975 hasConcept C78519656 @default.
- W2158918975 hasConcept C84525736 @default.
- W2158918975 hasConcept C86803240 @default.
- W2158918975 hasConcept C97137747 @default.
- W2158918975 hasConceptScore W2158918975C113174947 @default.
- W2158918975 hasConceptScore W2158918975C124101348 @default.
- W2158918975 hasConceptScore W2158918975C127413603 @default.
- W2158918975 hasConceptScore W2158918975C134306372 @default.
- W2158918975 hasConceptScore W2158918975C147176958 @default.
- W2158918975 hasConceptScore W2158918975C153180895 @default.
- W2158918975 hasConceptScore W2158918975C154945302 @default.
- W2158918975 hasConceptScore W2158918975C18903297 @default.
- W2158918975 hasConceptScore W2158918975C205649164 @default.
- W2158918975 hasConceptScore W2158918975C2780428219 @default.
- W2158918975 hasConceptScore W2158918975C2780648208 @default.
- W2158918975 hasConceptScore W2158918975C33283694 @default.
- W2158918975 hasConceptScore W2158918975C33923547 @default.
- W2158918975 hasConceptScore W2158918975C41008148 @default.
- W2158918975 hasConceptScore W2158918975C4792198 @default.
- W2158918975 hasConceptScore W2158918975C62649853 @default.
- W2158918975 hasConceptScore W2158918975C78519656 @default.
- W2158918975 hasConceptScore W2158918975C84525736 @default.
- W2158918975 hasConceptScore W2158918975C86803240 @default.
- W2158918975 hasConceptScore W2158918975C97137747 @default.
- W2158918975 hasIssue "2" @default.
- W2158918975 hasLocation W21589189751 @default.
- W2158918975 hasOpenAccess W2158918975 @default.
- W2158918975 hasPrimaryLocation W21589189751 @default.