Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158928281> ?p ?o ?g. }
- W2158928281 endingPage "356" @default.
- W2158928281 startingPage "347" @default.
- W2158928281 abstract "This paper presents, for the first time, a complete 2.4-25 μm spectrum of the dust-embedded young stellar object W33A. The spectrum was obtained with the Short Wavelength Spectrometer of the Infrared Space Observatory at a mean resolving power of ~750. The spectrum displays deep H2O ice and silicate absorptions centered at 3.0 and 9.7 μm, respectively, together with absorption features identified with various other molecules in the solid phase. The 2.4-5.0 μm region of the spectrum is used to investigate the long-standing problem of the H2O ice column density toward W33A, by means of the stretching and combination mode features at 3.0 and 4.5 μm. Although no flux is seen at the center of the 3.0 μm feature, its central depth may be constrained by fitting assumed profiles to the short- and long-wavelength wings in our spectrum. We deduce that a value of N(H2O) = (1.1 ± 0.3) × 1019 cm-2 is consistent with these features, a factor of at least 3 less than predicted by the H2O bending mode at 6.0 μm; the reason for this discrepancy is unclear. We report new results on the abundances of nitrogen-bearing species in the ices toward W33A. Solid NH3 is detected for the first time in this line of sight, by means of the inversion-mode feature at 9.0 μm. The column density is N(NH3) = (1.7 ± 0.4) × 1018 cm-2, implying an abundance of ~15% relative to H2O, comparable to that recently reported toward the young star NGC 7538 IRS 9. However, we find no convincing evidence for absorptions associated with the C≡N stretching mode of nitriles in the 4.4-4.6 μm region of the spectrum. If nitriles are present in the ices along this line of sight, they must have column density no more than ~1017 cm-2 or ~1% relative to H2O. This argues against identification of the deep 4.62 μm `XCN' feature with isonitriles, as an implausibly low nitrile to isonitrile abundance ratio (<0.1) would be implied. New and previously published results are combined to construct an inventory of column densities and abundances (normalized to H2O) for all known species detected in molecular ices toward W33A. A band strength appropriate to the cyanate ion is assumed to provide quantitative results for XCN. Results are compared with those for other well-studied lines of sight, including the Taurus field star Elias 16, the Galactic center source Sgr A*, and the young stellar objects NGC 7538 IRS 9, GL 2136, and GL 7009S. The CO and XCN abundances are used as indicators of thermal and energetic processing, respectively (where energetic processing may include either UV photolysis or energetic ion bombardment). Abundances for CH3OH vary from below 3% in unprocessed ices to ~20%-30% in W33A and GL 7009S, consistent with formation by energetic processing. In contrast, CH4 shows little evidence of variation. Abundance data for cometary ices indicate some general similarities with interstellar and protostellar ices. CO and CH3OH show comet-to-comet variations that may provide clues to their origins. The highest CH3OH concentrations in comets are comparable with average values for interstellar/protostellar ices." @default.
- W2158928281 created "2016-06-24" @default.
- W2158928281 creator A5014599124 @default.
- W2158928281 creator A5019876145 @default.
- W2158928281 creator A5021162619 @default.
- W2158928281 creator A5048422723 @default.
- W2158928281 creator A5048537056 @default.
- W2158928281 creator A5064747549 @default.
- W2158928281 creator A5068798822 @default.
- W2158928281 creator A5082931177 @default.
- W2158928281 creator A5083591780 @default.
- W2158928281 creator A5085109004 @default.
- W2158928281 creator A5089953923 @default.
- W2158928281 date "2000-06-10" @default.
- W2158928281 modified "2023-09-23" @default.
- W2158928281 title "An Inventory of Interstellar Ices toward the Embedded Protostar W33A" @default.
- W2158928281 cites W1612707052 @default.
- W2158928281 cites W1963697158 @default.
- W2158928281 cites W1967068693 @default.
- W2158928281 cites W1972150252 @default.
- W2158928281 cites W1973803955 @default.
- W2158928281 cites W1975911131 @default.
- W2158928281 cites W1983391936 @default.
- W2158928281 cites W1984474417 @default.
- W2158928281 cites W1986387249 @default.
- W2158928281 cites W1989320865 @default.
- W2158928281 cites W1991669733 @default.
- W2158928281 cites W1992644503 @default.
- W2158928281 cites W1993380035 @default.
- W2158928281 cites W1997686174 @default.
- W2158928281 cites W2002249160 @default.
- W2158928281 cites W2004758397 @default.
- W2158928281 cites W2011750248 @default.
- W2158928281 cites W2012574204 @default.
- W2158928281 cites W2020077654 @default.
- W2158928281 cites W2028867124 @default.
- W2158928281 cites W2033783749 @default.
- W2158928281 cites W2035247647 @default.
- W2158928281 cites W2041798036 @default.
- W2158928281 cites W2043045481 @default.
- W2158928281 cites W2045491059 @default.
- W2158928281 cites W2076343862 @default.
- W2158928281 cites W2076443553 @default.
- W2158928281 cites W2076725809 @default.
- W2158928281 cites W2089521388 @default.
- W2158928281 cites W2089542295 @default.
- W2158928281 cites W2109744415 @default.
- W2158928281 cites W2127168579 @default.
- W2158928281 cites W2133567501 @default.
- W2158928281 cites W2155728082 @default.
- W2158928281 cites W2156573163 @default.
- W2158928281 cites W2165092713 @default.
- W2158928281 cites W2170718234 @default.
- W2158928281 cites W2171340382 @default.
- W2158928281 cites W2461862567 @default.
- W2158928281 cites W4243620583 @default.
- W2158928281 doi "https://doi.org/10.1086/308940" @default.
- W2158928281 hasPublicationYear "2000" @default.
- W2158928281 type Work @default.
- W2158928281 sameAs 2158928281 @default.
- W2158928281 citedByCount "379" @default.
- W2158928281 countsByYear W21589282812012 @default.
- W2158928281 countsByYear W21589282812013 @default.
- W2158928281 countsByYear W21589282812014 @default.
- W2158928281 countsByYear W21589282812015 @default.
- W2158928281 countsByYear W21589282812016 @default.
- W2158928281 countsByYear W21589282812017 @default.
- W2158928281 countsByYear W21589282812018 @default.
- W2158928281 countsByYear W21589282812019 @default.
- W2158928281 countsByYear W21589282812020 @default.
- W2158928281 countsByYear W21589282812021 @default.
- W2158928281 countsByYear W21589282812022 @default.
- W2158928281 countsByYear W21589282812023 @default.
- W2158928281 crossrefType "journal-article" @default.
- W2158928281 hasAuthorship W2158928281A5014599124 @default.
- W2158928281 hasAuthorship W2158928281A5019876145 @default.
- W2158928281 hasAuthorship W2158928281A5021162619 @default.
- W2158928281 hasAuthorship W2158928281A5048422723 @default.
- W2158928281 hasAuthorship W2158928281A5048537056 @default.
- W2158928281 hasAuthorship W2158928281A5064747549 @default.
- W2158928281 hasAuthorship W2158928281A5068798822 @default.
- W2158928281 hasAuthorship W2158928281A5082931177 @default.
- W2158928281 hasAuthorship W2158928281A5083591780 @default.
- W2158928281 hasAuthorship W2158928281A5085109004 @default.
- W2158928281 hasAuthorship W2158928281A5089953923 @default.
- W2158928281 hasBestOaLocation W21589282811 @default.
- W2158928281 hasConcept C120665830 @default.
- W2158928281 hasConcept C121332964 @default.
- W2158928281 hasConcept C125857072 @default.
- W2158928281 hasConcept C1276947 @default.
- W2158928281 hasConcept C150846664 @default.
- W2158928281 hasConcept C158355884 @default.
- W2158928281 hasConcept C18797539 @default.
- W2158928281 hasConcept C202228572 @default.
- W2158928281 hasConcept C23254167 @default.
- W2158928281 hasConcept C2780928442 @default.
- W2158928281 hasConcept C33390570 @default.
- W2158928281 hasConcept C44870925 @default.