Matches in SemOpenAlex for { <https://semopenalex.org/work/W2158971846> ?p ?o ?g. }
- W2158971846 abstract "Description Logic has become one of the primary knowledge representation and reasoning methodologies during the last twenty years. A lot of areas are benefiting from description logic based technologies. Description logic reasoning algorithms and a number of optimization techniques for them play an important role and have been intensively researched.However, few of them have been systematically investigated in a concurrency context in spite of multi-processor computing facilities growing up. Meanwhile, semantic web, an application domain of description logic, is producing vast knowledge data on the Internet, which needs to be dealt with by using scalable solutions. This situation requires description logic reasoners to be endowed with reasoning scalability.This research introduced concurrent computing in two aspects: classification, and tableau-based description logic reasoning.Classification is a core description logic reasoning service. Over more than two decades many research efforts have been devoted to optimizing classification. Those classification optimization algorithms have shown their pragmatic effectiveness for sequential processing. However, as concurrent computing becomes widely available, new classification algorithms that are well suited to parallelization need to be developed. This need is further supported by the observation that most available OWL reasoners, which are usually based on tableau reasoning, can only utilize a single processor. Such an inadequacy often leads users working in ontology development to frustration, especially if their ontologies are complex and require long processing times.Classification service finds out all named concept subsumption relationships entailed in a knowledge base. Each subsumption test enrolls two concepts and is independent of the others. At most n^2 subsumption tests are needed for a knowledge base which contains n concepts. As the first contribution of this research, we developed an algorithm and a corresponding architecture showing that reasoning scalability can be gained by using concurrent computing.Further, this research investigated how concurrent computing can increase performance of tableau-based description logic reasoning algorithms. Tableau-based description logic reasoning decides a problem by constructing an AND-OR tree. Before this research, some research has shown the effectiveness of parallelizing processing disjunction branches of a tableau expansion tree. Our research has shown how reasoning scalability can be gained by processing conjunction branches of a tableau expansion tree.In addition, this research developed an algorithm, merge classification, that uses a divide and conquer strategy for parallelizing classification. This method applies concurrent computing to the more efficient classification algorithm, top-search & bottom-search, which has been adopted as a standard procedure for classification. Reasoning scalability can be observed in a number of real world cases by using this algorithm." @default.
- W2158971846 created "2016-06-24" @default.
- W2158971846 creator A5064331756 @default.
- W2158971846 date "2014-04-11" @default.
- W2158971846 modified "2023-09-27" @default.
- W2158971846 title "Parallelizing Description Logic Reasoning" @default.
- W2158971846 cites W10444887 @default.
- W2158971846 cites W136324773 @default.
- W2158971846 cites W140601803 @default.
- W2158971846 cites W145204354 @default.
- W2158971846 cites W1482211332 @default.
- W2158971846 cites W1482585805 @default.
- W2158971846 cites W1514379438 @default.
- W2158971846 cites W1523946132 @default.
- W2158971846 cites W1528986923 @default.
- W2158971846 cites W1529522905 @default.
- W2158971846 cites W1532908479 @default.
- W2158971846 cites W1533454855 @default.
- W2158971846 cites W1543879878 @default.
- W2158971846 cites W1545937500 @default.
- W2158971846 cites W1555563750 @default.
- W2158971846 cites W1555720472 @default.
- W2158971846 cites W1556295630 @default.
- W2158971846 cites W1568406216 @default.
- W2158971846 cites W1575501166 @default.
- W2158971846 cites W1580256897 @default.
- W2158971846 cites W1592358516 @default.
- W2158971846 cites W1598718436 @default.
- W2158971846 cites W1601038846 @default.
- W2158971846 cites W1603243195 @default.
- W2158971846 cites W1605911328 @default.
- W2158971846 cites W1606616363 @default.
- W2158971846 cites W1614615401 @default.
- W2158971846 cites W1637478387 @default.
- W2158971846 cites W1678959094 @default.
- W2158971846 cites W167906840 @default.
- W2158971846 cites W1756261662 @default.
- W2158971846 cites W1809072088 @default.
- W2158971846 cites W183822441 @default.
- W2158971846 cites W190204705 @default.
- W2158971846 cites W192221291 @default.
- W2158971846 cites W1936956611 @default.
- W2158971846 cites W1975309138 @default.
- W2158971846 cites W1978912716 @default.
- W2158971846 cites W1980794674 @default.
- W2158971846 cites W1982030536 @default.
- W2158971846 cites W2013643406 @default.
- W2158971846 cites W2048810095 @default.
- W2158971846 cites W2049677513 @default.
- W2158971846 cites W2052598152 @default.
- W2158971846 cites W2070931532 @default.
- W2158971846 cites W2096176691 @default.
- W2158971846 cites W2103174261 @default.
- W2158971846 cites W2104805479 @default.
- W2158971846 cites W2122368812 @default.
- W2158971846 cites W2126755595 @default.
- W2158971846 cites W2133630909 @default.
- W2158971846 cites W2137862151 @default.
- W2158971846 cites W2139659159 @default.
- W2158971846 cites W2141459569 @default.
- W2158971846 cites W2141970373 @default.
- W2158971846 cites W2144631782 @default.
- W2158971846 cites W2145465694 @default.
- W2158971846 cites W2145982368 @default.
- W2158971846 cites W2147729309 @default.
- W2158971846 cites W2154947803 @default.
- W2158971846 cites W2159525276 @default.
- W2158971846 cites W2163272338 @default.
- W2158971846 cites W2165433828 @default.
- W2158971846 cites W2168169810 @default.
- W2158971846 cites W2171142397 @default.
- W2158971846 cites W2172533712 @default.
- W2158971846 cites W2175268987 @default.
- W2158971846 cites W2265380572 @default.
- W2158971846 cites W2400902361 @default.
- W2158971846 cites W2404154736 @default.
- W2158971846 cites W2406441913 @default.
- W2158971846 cites W283472482 @default.
- W2158971846 cites W2912282119 @default.
- W2158971846 cites W2952727465 @default.
- W2158971846 cites W62327733 @default.
- W2158971846 cites W80737574 @default.
- W2158971846 cites W90612850 @default.
- W2158971846 cites W944302435 @default.
- W2158971846 cites W1529742042 @default.
- W2158971846 cites W3027109149 @default.
- W2158971846 hasPublicationYear "2014" @default.
- W2158971846 type Work @default.
- W2158971846 sameAs 2158971846 @default.
- W2158971846 citedByCount "0" @default.
- W2158971846 crossrefType "dissertation" @default.
- W2158971846 hasAuthorship W2158971846A5064331756 @default.
- W2158971846 hasConcept C102993220 @default.
- W2158971846 hasConcept C111472728 @default.
- W2158971846 hasConcept C128838566 @default.
- W2158971846 hasConcept C138885662 @default.
- W2158971846 hasConcept C151730666 @default.
- W2158971846 hasConcept C154945302 @default.
- W2158971846 hasConcept C159032336 @default.
- W2158971846 hasConcept C161301231 @default.