Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159002247> ?p ?o ?g. }
- W2159002247 endingPage "54" @default.
- W2159002247 startingPage "35" @default.
- W2159002247 abstract "Mesozoic mafic magmatism in the North China Craton shows a clear temporal and spatial distribution. Mesozoic mafic volcanism occurred dominantly in the northern and southern margins of the craton, with episodic eruptions from Early Jurassic to Late Cretaceous time. In contrast, Mesozoic mafic magmatism, which produced gabbroic to dioritic intrusive complexes, occurred in the centre of the craton in areas such as the Taihang Mountains and the Luzhong region, and all the complexes were intruded at almost the same time in the Early Cretaceous. This temporal and spatial distribution of Mesozoic mafic magmatism shows a strong heterogeneity of the Late Mesozoic lithospheric mantle beneath the North China Craton and a secular evolution of the lithospheric mantle beneath it. The lithospheric mantle beneath the Luzhong region is slightly isotopically enriched; that beneath the Taihang Mountains has an EM1 character in Sr and Nd isotopic features (Sr/Sr)i 1⁄4 0.7050–0.7066; 1Nd(t) 1⁄4 217 to 210); and it possesses EM2-like characteristics (Sr/Sr)i up to 0.7114) beneath the Luxi–Jiaodong region. The general enrichment suggests that the Mesozoic lithospheric mantle was distinctive compared with Palaeozoic and Cenozoic counterparts. The secular evolution of this variably enriched Mesozoic lithospheric mantle requires a considerable modification, transformation and reconstruction of the lithospheric mantle beneath the craton in Late Mesozoic time. The elemental and isotopic compositions and the coherence of the lithospheric changes with the formation of circum-craton orogenic mobile belts indicate that these rapid lithospheric changes and corresponding lithospheric thinning were tectonically related to the multiple subduction and subsequent collisions of circumcraton blocks. Dehydration melting of subducted oceanic and continental crustal materials produced silicic melts that migrated up and reacted with lithospheric peridotites to generate more fertile lithospheric mantle (‘wet’ low-Mg peridotites plus pyroxenite veins). This is demonstrated by the fact that beneath the southern and northern margins the mantle was strongly modified, but beneath the central craton the effects were less marked. Compositional mapping of olivine from mantle peridotitic xenoliths and xenocrysts entrained in Mesozoic and Cenozoic basalts and mafic rocks throughout the craton suggests a similar framework. The North China Craton provides convincing evidence that the nature of the refractory lithospheric mantle was considerably changed in chemical composition through time, and that the lithospheric destruction was triggered by multiple circum-craton subductions and collisions. The North China Craton (NCC) has an evolutionary history distinctive from that of other Archaean cratons in the world; its eastern part (the Taihang Mountains and area to the east) became tectonically active in the Phanerozoic, as manifested by frequent earthquakes and magmatism. The occurrence of mid-Ordovician (465 Ma) diamondiferous kimberlites and their entrained garnet peridotitic xenoliths within the eastern NCC in the Mengyin and Fuxian kimberlite fields reveals the presence of old and cold Palaeozoic lithospheric mantle with a thickness greater than 200 km (Fan & Menzies 1992; Griffin et al. 1992, 1998; Menzies et al. 1993; Chi 1996; Menzies & Xu 1998). This was further demonstrated by investigations of mantle peridotitic xenoliths, xenocrysts and heavy mineral concentrates, and supported by the geothermobarometry of solid mineral inclusions in diamonds and Re–Os isotopic data for peridotitic xenoliths entrained in these kimberlites (Harris et al. 1994; Meyer et al. 1994; Zheng 1999; Wang & Gasparik 2001; Xu 2001; Gao et al. 2002). The underlying lithospheric mantle was dominantly composed of refractory or major element depleted (alkalis, Ca, Fe, and Al) harzburgites and clinopyroxene-poor lherzolites (i.e. possessing the features of typical cratonic lithospheric mantle). However, systematic studies on the major and trace elements and Sr–Nd isotopic compositions of Cenozoic basalt-borne spinel lherzolite xenoliths show the existence of a thinner (,80 km) and hotter lithospheric mantle beneath the eastern NCC in the Cenozoic From: ZHAI, M.-G., WINDLEY, B. F., KUSKY, T. M. & MENG, Q. R. (eds) Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society, London, Special Publications, 280, 35–54. DOI: 10.1144/SP280.2 0305-8719/07/$15 # The Geological Society of London 2007. (Fan et al. 2000; Zheng et al. 2001), when the lithospheric mantle was fertile and isotopically depleted (i.e. having the features of ‘oceanic’ lithospheric mantle beneath the ocean basins or tectonically active orogens). This was further demonstrated by geophysical and palaeogeothermal data and Re– Os isotopic results (Ma 1987; Gao et al. 2002; Wu et al. 2003a; Xia et al. 2004). Therefore, it is suggested that large-scale lithospheric thinning beneath the eastern NCC took place between the Ordovician and the Cenozoic, leading to the loss of about 100 km of lithosphere (Fan & Menzies 1992; Menzies et al. 1993; Deng et al. 1994, 1996, 2004; Griffin et al. 1998; Menzies & Xu 1998; Fan et al. 2000; Xu 2001; Zheng et al. 2001). This also resulted in marked compositional changes of the lithospheric mantle from a cold, thick and refractory Palaeozoic lithosphere (Griffin et al. 1992; Menzies et al. 1993) to a hot, thin and fertile Cenozoic lithosphere (Fan et al. 2000). Now the questions are: When, where and how did such lithospheric thinning take place? How many times did the compositional changes of lithospheric mantle occur, once or twice? What was the geodynamic background responsible for the modification and destruction of the lithospheric mantle? Many recent investigations have been made of this important lithospheric thinning and many studies undertaken on the Mesozoic mantle-derived mafic rocks (Fan et al. 2001, 2004; Guo et al. 2001; Qiu et al. 2002; Zhang & Sun 2002; Zhang et al. 2002, 2003, 2004a, 2005; Chen & Zhai 2003; Guo et al. 2003; Yan et al. 2003; Zhai et al. 2003; Chen & Zhou 2004; Chen et al. 2004; Gao et al. 2004; Xu 2004; Xu et al. 2004a, b; Yang et al. 2004; Ying et al. 2004, 2006a; Lu et al. 2005; Wang et al. 2005; Zhou et al. 2005). This paper is a review based on the recognition of the temporal and spatial distribution of Mesozoic mafic magmatism throughout the craton. A systematic compilation of the geochemical data for these mafic rocks and compositional mapping of olivines from mantle peridotitic xenoliths and xenocrysts entrained from both Mesozoic and Cenozoic basalts are reported here, to probe the nature and composition of the lithospheric mantle beneath the craton and to understand the enrichment processes and the mechanism responsible for them." @default.
- W2159002247 created "2016-06-24" @default.
- W2159002247 creator A5050310962 @default.
- W2159002247 date "2007-01-01" @default.
- W2159002247 modified "2023-09-27" @default.
- W2159002247 title "Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution" @default.
- W2159002247 cites W1523733318 @default.
- W2159002247 cites W1572590226 @default.
- W2159002247 cites W1585382097 @default.
- W2159002247 cites W1587624588 @default.
- W2159002247 cites W1594736891 @default.
- W2159002247 cites W1974895125 @default.
- W2159002247 cites W1976588438 @default.
- W2159002247 cites W1978993965 @default.
- W2159002247 cites W1981127924 @default.
- W2159002247 cites W1991132092 @default.
- W2159002247 cites W1997694024 @default.
- W2159002247 cites W1997912678 @default.
- W2159002247 cites W2000852740 @default.
- W2159002247 cites W2002471053 @default.
- W2159002247 cites W2003371840 @default.
- W2159002247 cites W2003454252 @default.
- W2159002247 cites W2009148447 @default.
- W2159002247 cites W2010906549 @default.
- W2159002247 cites W2011640297 @default.
- W2159002247 cites W2024364472 @default.
- W2159002247 cites W2024674080 @default.
- W2159002247 cites W2024732666 @default.
- W2159002247 cites W2026930689 @default.
- W2159002247 cites W2031702156 @default.
- W2159002247 cites W2031840849 @default.
- W2159002247 cites W2032387720 @default.
- W2159002247 cites W2034567837 @default.
- W2159002247 cites W2040903195 @default.
- W2159002247 cites W2048779068 @default.
- W2159002247 cites W2049907150 @default.
- W2159002247 cites W2053034403 @default.
- W2159002247 cites W2054911647 @default.
- W2159002247 cites W2055333538 @default.
- W2159002247 cites W2058314706 @default.
- W2159002247 cites W2063754919 @default.
- W2159002247 cites W2066092075 @default.
- W2159002247 cites W2066564462 @default.
- W2159002247 cites W2069762342 @default.
- W2159002247 cites W2078077048 @default.
- W2159002247 cites W2081673871 @default.
- W2159002247 cites W2083841543 @default.
- W2159002247 cites W2083844863 @default.
- W2159002247 cites W2084866171 @default.
- W2159002247 cites W2085672146 @default.
- W2159002247 cites W2089096123 @default.
- W2159002247 cites W2090780260 @default.
- W2159002247 cites W2091646615 @default.
- W2159002247 cites W2092678398 @default.
- W2159002247 cites W2103175594 @default.
- W2159002247 cites W2123985829 @default.
- W2159002247 cites W2127045574 @default.
- W2159002247 cites W2127559886 @default.
- W2159002247 cites W2130869872 @default.
- W2159002247 cites W2146764162 @default.
- W2159002247 cites W2150751289 @default.
- W2159002247 cites W2167856052 @default.
- W2159002247 cites W2169278971 @default.
- W2159002247 cites W2369501398 @default.
- W2159002247 doi "https://doi.org/10.1144/sp280.2" @default.
- W2159002247 hasPublicationYear "2007" @default.
- W2159002247 type Work @default.
- W2159002247 sameAs 2159002247 @default.
- W2159002247 citedByCount "27" @default.
- W2159002247 countsByYear W21590022472012 @default.
- W2159002247 countsByYear W21590022472013 @default.
- W2159002247 countsByYear W21590022472015 @default.
- W2159002247 countsByYear W21590022472016 @default.
- W2159002247 countsByYear W21590022472017 @default.
- W2159002247 countsByYear W21590022472018 @default.
- W2159002247 countsByYear W21590022472019 @default.
- W2159002247 countsByYear W21590022472020 @default.
- W2159002247 countsByYear W21590022472021 @default.
- W2159002247 countsByYear W21590022472023 @default.
- W2159002247 crossrefType "journal-article" @default.
- W2159002247 hasAuthorship W2159002247A5050310962 @default.
- W2159002247 hasConcept C109007969 @default.
- W2159002247 hasConcept C127313418 @default.
- W2159002247 hasConcept C147717901 @default.
- W2159002247 hasConcept C151730666 @default.
- W2159002247 hasConcept C162973429 @default.
- W2159002247 hasConcept C166957645 @default.
- W2159002247 hasConcept C167284885 @default.
- W2159002247 hasConcept C16942324 @default.
- W2159002247 hasConcept C17409809 @default.
- W2159002247 hasConcept C191935318 @default.
- W2159002247 hasConcept C1965285 @default.
- W2159002247 hasConcept C202783661 @default.
- W2159002247 hasConcept C205649164 @default.
- W2159002247 hasConcept C77928131 @default.
- W2159002247 hasConceptScore W2159002247C109007969 @default.
- W2159002247 hasConceptScore W2159002247C127313418 @default.
- W2159002247 hasConceptScore W2159002247C147717901 @default.