Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159295572> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2159295572 endingPage "7" @default.
- W2159295572 startingPage "1" @default.
- W2159295572 abstract "a page to be a best one, based only on Page Ranking algorithm of Brin and Page would be insufficient. This method relied totally on Link information alone. However, due to application of Soft Computing in Data Mining and Knowledge Discovery, machines were made more effective, additional features of a Page involving its indexing, terms used, capitalizations, anchor texts, hit information, etc. were considered. The classification problem helped to induce this to a great extent. The complexity of dealing with a large number of web pages on the net made researchers to think of solutions dealing with sampling pages randomly and then making an analysis of the features of these pages. Soft Computing techniques were used for analysis of the features of the page. These techniques involved Genetic Algorithms, Neural Networks, Fuzzy Logic and Rough sets. User' profiles of pages were created from the retrieved ones. Good and bad Pages were categorised on the basis of the terms they contained and these profiles were preserved for further reference. Pages were compared with each other for their similarity using Jaccard score and Best First search algorithm with developed software agents. Adaptive methods were used. Such methods were close to the concept of Genetic algorithm applications. The frequency at which a user visited web pages was also considered as a parameter of interest. Techniques to generate features of pages using co-occurance analysis were developed and web pages were classified based on machine learning. A good method of rating a page provided benefits like relevance, efficiency and indirectly on a crawl priority of a search engine which was more preferred. The web content designed as on date is for human reading and not typically tractable for machines. The semantic web had to provide structured content by adding annotations. Tools were made available to do these conversions. User-generated metadata that expresses a user taste and interest was used to personalize information to an individual user. Specifically, a machine learning method that analyzed a corpus of tagged content was to be used to find hidden topics. It then used these learned topics to select content that matched a users' interest, thus returning best relevant information pages. Even though Google scholar does not use synonyms and is strict to article text for searching a document, the use of synonyms reduce irrelevant search, causes intent drifting but synonym discovery is context sensitive these features motivate the use of synonyms to expediate the search and to rank relevant documents at a higher position. Google and Wordnet use synonyms but no documentation mentions using combination of synonyms for a term to generate a better relevant search, The present paper will concentrate on presenting a developed search technique to find a best page based on synonyms. The technique is based on the concept of adaptive search using synonyms of a search keyword extracted from a dictionary. These synonyms are then combined in different sets and given to a search engine which will return most relevant documents required by the user at a higher ranking." @default.
- W2159295572 created "2016-06-24" @default.
- W2159295572 creator A5044723382 @default.
- W2159295572 creator A5044826953 @default.
- W2159295572 date "2013-03-15" @default.
- W2159295572 modified "2023-09-24" @default.
- W2159295572 title "Finding the Best page using Synonyms" @default.
- W2159295572 cites W1504741607 @default.
- W2159295572 cites W1534835231 @default.
- W2159295572 cites W1545669252 @default.
- W2159295572 cites W1549874165 @default.
- W2159295572 cites W1890284543 @default.
- W2159295572 cites W1932864058 @default.
- W2159295572 cites W1979325497 @default.
- W2159295572 cites W2005308708 @default.
- W2159295572 cites W204619582 @default.
- W2159295572 cites W2055517015 @default.
- W2159295572 cites W2065915312 @default.
- W2159295572 cites W2066636486 @default.
- W2159295572 cites W2087686687 @default.
- W2159295572 cites W2099548400 @default.
- W2159295572 cites W2111741080 @default.
- W2159295572 cites W2130635163 @default.
- W2159295572 cites W2147801678 @default.
- W2159295572 cites W2157662985 @default.
- W2159295572 cites W2183761542 @default.
- W2159295572 cites W2189422997 @default.
- W2159295572 cites W2314795744 @default.
- W2159295572 cites W2409881256 @default.
- W2159295572 cites W2962678499 @default.
- W2159295572 hasPublicationYear "2013" @default.
- W2159295572 type Work @default.
- W2159295572 sameAs 2159295572 @default.
- W2159295572 citedByCount "0" @default.
- W2159295572 crossrefType "journal-article" @default.
- W2159295572 hasAuthorship W2159295572A5044723382 @default.
- W2159295572 hasAuthorship W2159295572A5044826953 @default.
- W2159295572 hasConcept C124101348 @default.
- W2159295572 hasConcept C136764020 @default.
- W2159295572 hasConcept C154945302 @default.
- W2159295572 hasConcept C158154518 @default.
- W2159295572 hasConcept C173576120 @default.
- W2159295572 hasConcept C17744445 @default.
- W2159295572 hasConcept C189430467 @default.
- W2159295572 hasConcept C195409031 @default.
- W2159295572 hasConcept C199539241 @default.
- W2159295572 hasConcept C203519979 @default.
- W2159295572 hasConcept C21959979 @default.
- W2159295572 hasConcept C23123220 @default.
- W2159295572 hasConcept C41008148 @default.
- W2159295572 hasConcept C61096286 @default.
- W2159295572 hasConcept C73555534 @default.
- W2159295572 hasConcept C75165309 @default.
- W2159295572 hasConceptScore W2159295572C124101348 @default.
- W2159295572 hasConceptScore W2159295572C136764020 @default.
- W2159295572 hasConceptScore W2159295572C154945302 @default.
- W2159295572 hasConceptScore W2159295572C158154518 @default.
- W2159295572 hasConceptScore W2159295572C173576120 @default.
- W2159295572 hasConceptScore W2159295572C17744445 @default.
- W2159295572 hasConceptScore W2159295572C189430467 @default.
- W2159295572 hasConceptScore W2159295572C195409031 @default.
- W2159295572 hasConceptScore W2159295572C199539241 @default.
- W2159295572 hasConceptScore W2159295572C203519979 @default.
- W2159295572 hasConceptScore W2159295572C21959979 @default.
- W2159295572 hasConceptScore W2159295572C23123220 @default.
- W2159295572 hasConceptScore W2159295572C41008148 @default.
- W2159295572 hasConceptScore W2159295572C61096286 @default.
- W2159295572 hasConceptScore W2159295572C73555534 @default.
- W2159295572 hasConceptScore W2159295572C75165309 @default.
- W2159295572 hasIssue "8" @default.
- W2159295572 hasLocation W21592955721 @default.
- W2159295572 hasOpenAccess W2159295572 @default.
- W2159295572 hasPrimaryLocation W21592955721 @default.
- W2159295572 hasRelatedWork W1571718547 @default.
- W2159295572 hasRelatedWork W1602832584 @default.
- W2159295572 hasRelatedWork W1853786402 @default.
- W2159295572 hasRelatedWork W1918067237 @default.
- W2159295572 hasRelatedWork W2061031592 @default.
- W2159295572 hasRelatedWork W2103507269 @default.
- W2159295572 hasRelatedWork W2119283498 @default.
- W2159295572 hasRelatedWork W2120674308 @default.
- W2159295572 hasRelatedWork W2169033019 @default.
- W2159295572 hasRelatedWork W2312453384 @default.
- W2159295572 hasRelatedWork W2376980310 @default.
- W2159295572 hasRelatedWork W2401093594 @default.
- W2159295572 hasRelatedWork W2555697458 @default.
- W2159295572 hasRelatedWork W2605041380 @default.
- W2159295572 hasRelatedWork W2925387597 @default.
- W2159295572 hasRelatedWork W628551565 @default.
- W2159295572 hasRelatedWork W1044966370 @default.
- W2159295572 hasRelatedWork W2000745862 @default.
- W2159295572 hasRelatedWork W2183911710 @default.
- W2159295572 hasRelatedWork W3203028769 @default.
- W2159295572 hasVolume "65" @default.
- W2159295572 isParatext "false" @default.
- W2159295572 isRetracted "false" @default.
- W2159295572 magId "2159295572" @default.
- W2159295572 workType "article" @default.