Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159346908> ?p ?o ?g. }
- W2159346908 endingPage "1303" @default.
- W2159346908 startingPage "1293" @default.
- W2159346908 abstract "The present work describes the development and validation of Artificial Neural Networks (ANN) by comparison with classical and more advanced parametric and nonparametric statistical modeling methods such as Multiple Regression (MR), Generalized Additive Models (GAM), and Alternating Conditional Expectations (ACE) to esti-mate spatial distribution of fish in a mesotrophic reservoir. The modeling approaches were developed and tested using 60 hydroacoustic transects covering the whole lake. Each transect was divided into 100-m-long sections, constituting a total of 732 sampling units. For each of them, the relationships between topology, chemical characteristics, and fish abundance were studied. The models had six independent topological (i.e., depth, distance from the bank, slope, and stratum) and chemical (i.e., temperature and dissolved oxygen) variables and one dependent output variable (fish density, FD). The data matrix was divided into two parts. The first contained units where FD was nonnil (i.e., 399 sampling units), and the second contained only cases without fish (i.e., 333 sampling units). Model training and testing procedures were run on the first submatrix after log(FD + 1) transformation. As linear MR results were not satisfactory (r2 = 0.42 in the training set, and r2 = 0.51 in the testing set) compared with ANN (r2 = 0.81 in the training set, and r2 = 0.77 in the testing set), we tried nonlinear transformations of the variables such as logarithmic, lowess (for the GAM), and an optimal nonlinear transformation using the SAS Transreg procedure (for the ACE model), but the determination coefficients remained clearly lower than those obtained using ANN (r2 = 0.60 in the training set for ACE, and r2 = 0.66 in the training set for GAM). The results of a second test on the nil submatrix stressed that, compared with other statistical techniques, ANN and, to a certain extent, GAM models were able to clearly define the potential FDs in samples where no fish were actually found. The model showed, on the basis of the topological and chemical variables taken into account, that the predicted potential FDs in the surface stratum are higher than in the underlying stratum. Finally, on the basis of the sensitivity analyses performed on the ANN and GAM results, we established relationships between FDs and the six environmental variables. Our results exhibit a clear summer habitat preferendum, the fish (predominantly roach) being located mainly in the surface stratum, in the warm shallow littoral areas. These observations led us to discuss the ecological significance of such a fish distribution, which may be due to a trade-off between feeding, predation avoidance, and endogenous fish requirements." @default.
- W2159346908 created "2016-06-24" @default.
- W2159346908 creator A5001414294 @default.
- W2159346908 creator A5009032476 @default.
- W2159346908 creator A5026363578 @default.
- W2159346908 date "1999-07-01" @default.
- W2159346908 modified "2023-10-08" @default.
- W2159346908 title "Predicting fish distribution in a mesotrophic lake by hydroacoustic survey and artificial neural networks" @default.
- W2159346908 cites W1497558047 @default.
- W2159346908 cites W1498436455 @default.
- W2159346908 cites W1504881267 @default.
- W2159346908 cites W1518628939 @default.
- W2159346908 cites W1545877870 @default.
- W2159346908 cites W1563636823 @default.
- W2159346908 cites W1680392829 @default.
- W2159346908 cites W1833005471 @default.
- W2159346908 cites W1965101702 @default.
- W2159346908 cites W1974240365 @default.
- W2159346908 cites W1982592966 @default.
- W2159346908 cites W1986521635 @default.
- W2159346908 cites W1990265619 @default.
- W2159346908 cites W1991448548 @default.
- W2159346908 cites W1994543900 @default.
- W2159346908 cites W1994570564 @default.
- W2159346908 cites W1999589562 @default.
- W2159346908 cites W2003756933 @default.
- W2159346908 cites W2009288088 @default.
- W2159346908 cites W2010641979 @default.
- W2159346908 cites W2017454354 @default.
- W2159346908 cites W2019717348 @default.
- W2159346908 cites W2023559070 @default.
- W2159346908 cites W2024081693 @default.
- W2159346908 cites W2030748132 @default.
- W2159346908 cites W2034690972 @default.
- W2159346908 cites W2042884977 @default.
- W2159346908 cites W2059748142 @default.
- W2159346908 cites W2076118331 @default.
- W2159346908 cites W2085193147 @default.
- W2159346908 cites W2086461929 @default.
- W2159346908 cites W2117295674 @default.
- W2159346908 cites W2144638471 @default.
- W2159346908 cites W2147847107 @default.
- W2159346908 cites W2148719103 @default.
- W2159346908 cites W2157741544 @default.
- W2159346908 cites W2180769203 @default.
- W2159346908 cites W2292765240 @default.
- W2159346908 cites W2328024248 @default.
- W2159346908 cites W2460265829 @default.
- W2159346908 cites W2467303171 @default.
- W2159346908 cites W2773346083 @default.
- W2159346908 cites W2797583072 @default.
- W2159346908 cites W2985646897 @default.
- W2159346908 cites W3032906345 @default.
- W2159346908 cites W36760071 @default.
- W2159346908 cites W2503404098 @default.
- W2159346908 doi "https://doi.org/10.4319/lo.1999.44.5.1293" @default.
- W2159346908 hasPublicationYear "1999" @default.
- W2159346908 type Work @default.
- W2159346908 sameAs 2159346908 @default.
- W2159346908 citedByCount "37" @default.
- W2159346908 countsByYear W21593469082012 @default.
- W2159346908 countsByYear W21593469082013 @default.
- W2159346908 countsByYear W21593469082016 @default.
- W2159346908 countsByYear W21593469082017 @default.
- W2159346908 countsByYear W21593469082018 @default.
- W2159346908 countsByYear W21593469082019 @default.
- W2159346908 countsByYear W21593469082020 @default.
- W2159346908 countsByYear W21593469082022 @default.
- W2159346908 countsByYear W21593469082023 @default.
- W2159346908 crossrefType "journal-article" @default.
- W2159346908 hasAuthorship W2159346908A5001414294 @default.
- W2159346908 hasAuthorship W2159346908A5009032476 @default.
- W2159346908 hasAuthorship W2159346908A5026363578 @default.
- W2159346908 hasBestOaLocation W21593469081 @default.
- W2159346908 hasConcept C102366305 @default.
- W2159346908 hasConcept C104317684 @default.
- W2159346908 hasConcept C105795698 @default.
- W2159346908 hasConcept C106131492 @default.
- W2159346908 hasConcept C134306372 @default.
- W2159346908 hasConcept C140779682 @default.
- W2159346908 hasConcept C152877465 @default.
- W2159346908 hasConcept C154945302 @default.
- W2159346908 hasConcept C186060115 @default.
- W2159346908 hasConcept C18903297 @default.
- W2159346908 hasConcept C194648359 @default.
- W2159346908 hasConcept C204241405 @default.
- W2159346908 hasConcept C31972630 @default.
- W2159346908 hasConcept C33923547 @default.
- W2159346908 hasConcept C39927690 @default.
- W2159346908 hasConcept C41008148 @default.
- W2159346908 hasConcept C46889948 @default.
- W2159346908 hasConcept C48921125 @default.
- W2159346908 hasConcept C50644808 @default.
- W2159346908 hasConcept C55493867 @default.
- W2159346908 hasConcept C58489278 @default.
- W2159346908 hasConcept C69661492 @default.
- W2159346908 hasConcept C86803240 @default.
- W2159346908 hasConceptScore W2159346908C102366305 @default.