Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159598703> ?p ?o ?g. }
- W2159598703 abstract "Two extrusion experiments using a single screw extruder were conducted with an ingredient blend containing 40% DDGS, along with soy flour, corn flour, fish meal, vitamin mix, and mineral mix, with the net protein content adjusted to 28%. The variables controlled in the first experiment included 7 levels of die size, 3 levels of moisture content, 3 levels of temperature gradient in the barrel, and one screw speed. The variables altered in the second experiment included 3 levels of moisture content, 3 levels of temperature gradient in the barrel, 5 levels of screw speed, and one die size. Regression models and Neural Network (NN) models were then developed using the data pooled from the two experiments to predict extrudate properties and extrusion processing parameters. In general, both regression and NN models predicted the extrusion processing parameters with better accuracy than the extrudate properties. With the regression modeling, even though increasing the number of input variables from 3 to 6 resulted in better R2 values, there was no significant decrease in the coefficient of variation between the measured and predicted variables. On the other hand, the NN models developed with 3 input variables (L/D ratio of die, moisture content and temperature gradient) predicted the extrusion processing parameters and extrudate properties with better accuracy than the regression models developed with the same 3 input variables. Furthermore, increasing the number of input variables resulted in better accuracy of prediction for both extrudate properties and extrusion processing parameters, and the standard error and coefficient of variation were also found to decrease. The highest accuracy of prediction was observed for the NN models developed to predict the extrusion processing parameters with 6 input variables (D, L, L/D ratio of die, moisture content, temperature gradient and screw speed). Because of its ability to account for variation, NN modeling has great potential for developing robust models for extrusion processing." @default.
- W2159598703 created "2016-06-24" @default.
- W2159598703 creator A5034484876 @default.
- W2159598703 creator A5048798645 @default.
- W2159598703 creator A5090237709 @default.
- W2159598703 date "2007-01-01" @default.
- W2159598703 modified "2023-09-25" @default.
- W2159598703 title "Neural Network and Regression Modeling of Extrusion Processing Parameters and Properties of Extrudates containing DDGS" @default.
- W2159598703 cites W1965603383 @default.
- W2159598703 cites W1971858725 @default.
- W2159598703 cites W1973963568 @default.
- W2159598703 cites W1975967686 @default.
- W2159598703 cites W1979849989 @default.
- W2159598703 cites W1980492216 @default.
- W2159598703 cites W1987610696 @default.
- W2159598703 cites W1988221971 @default.
- W2159598703 cites W1990249198 @default.
- W2159598703 cites W1995875757 @default.
- W2159598703 cites W1999129321 @default.
- W2159598703 cites W2000836282 @default.
- W2159598703 cites W2005659053 @default.
- W2159598703 cites W2011930321 @default.
- W2159598703 cites W2012279081 @default.
- W2159598703 cites W2022167008 @default.
- W2159598703 cites W2030560060 @default.
- W2159598703 cites W2032106172 @default.
- W2159598703 cites W2033887088 @default.
- W2159598703 cites W2049075712 @default.
- W2159598703 cites W2055679489 @default.
- W2159598703 cites W2056058495 @default.
- W2159598703 cites W2057880705 @default.
- W2159598703 cites W2065260714 @default.
- W2159598703 cites W2070401560 @default.
- W2159598703 cites W2070918732 @default.
- W2159598703 cites W2071559287 @default.
- W2159598703 cites W2076251710 @default.
- W2159598703 cites W2093090592 @default.
- W2159598703 cites W2097567435 @default.
- W2159598703 cites W2122450421 @default.
- W2159598703 cites W2144298116 @default.
- W2159598703 cites W2154178442 @default.
- W2159598703 cites W2471093698 @default.
- W2159598703 cites W3146425672 @default.
- W2159598703 cites W579800604 @default.
- W2159598703 cites W621965628 @default.
- W2159598703 cites W2001398827 @default.
- W2159598703 doi "https://doi.org/10.13031/2013.23344" @default.
- W2159598703 hasPublicationYear "2007" @default.
- W2159598703 type Work @default.
- W2159598703 sameAs 2159598703 @default.
- W2159598703 citedByCount "10" @default.
- W2159598703 countsByYear W21595987032012 @default.
- W2159598703 countsByYear W21595987032013 @default.
- W2159598703 countsByYear W21595987032018 @default.
- W2159598703 countsByYear W21595987032019 @default.
- W2159598703 countsByYear W21595987032023 @default.
- W2159598703 crossrefType "proceedings-article" @default.
- W2159598703 hasAuthorship W2159598703A5034484876 @default.
- W2159598703 hasAuthorship W2159598703A5048798645 @default.
- W2159598703 hasAuthorship W2159598703A5090237709 @default.
- W2159598703 hasConcept C105795698 @default.
- W2159598703 hasConcept C127413603 @default.
- W2159598703 hasConcept C152877465 @default.
- W2159598703 hasConcept C159985019 @default.
- W2159598703 hasConcept C18337273 @default.
- W2159598703 hasConcept C187320778 @default.
- W2159598703 hasConcept C192562407 @default.
- W2159598703 hasConcept C24939127 @default.
- W2159598703 hasConcept C2778958987 @default.
- W2159598703 hasConcept C33923547 @default.
- W2159598703 hasConcept C48921125 @default.
- W2159598703 hasConcept C97103648 @default.
- W2159598703 hasConceptScore W2159598703C105795698 @default.
- W2159598703 hasConceptScore W2159598703C127413603 @default.
- W2159598703 hasConceptScore W2159598703C152877465 @default.
- W2159598703 hasConceptScore W2159598703C159985019 @default.
- W2159598703 hasConceptScore W2159598703C18337273 @default.
- W2159598703 hasConceptScore W2159598703C187320778 @default.
- W2159598703 hasConceptScore W2159598703C192562407 @default.
- W2159598703 hasConceptScore W2159598703C24939127 @default.
- W2159598703 hasConceptScore W2159598703C2778958987 @default.
- W2159598703 hasConceptScore W2159598703C33923547 @default.
- W2159598703 hasConceptScore W2159598703C48921125 @default.
- W2159598703 hasConceptScore W2159598703C97103648 @default.
- W2159598703 hasLocation W21595987031 @default.
- W2159598703 hasOpenAccess W2159598703 @default.
- W2159598703 hasPrimaryLocation W21595987031 @default.
- W2159598703 hasRelatedWork W1917969940 @default.
- W2159598703 hasRelatedWork W2014492382 @default.
- W2159598703 hasRelatedWork W2048772069 @default.
- W2159598703 hasRelatedWork W2083970159 @default.
- W2159598703 hasRelatedWork W2128221043 @default.
- W2159598703 hasRelatedWork W2138843815 @default.
- W2159598703 hasRelatedWork W2152634911 @default.
- W2159598703 hasRelatedWork W2217472960 @default.
- W2159598703 hasRelatedWork W2972331722 @default.
- W2159598703 hasRelatedWork W3213383096 @default.
- W2159598703 isParatext "false" @default.
- W2159598703 isRetracted "false" @default.
- W2159598703 magId "2159598703" @default.