Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159719504> ?p ?o ?g. }
- W2159719504 endingPage "203" @default.
- W2159719504 startingPage "191" @default.
- W2159719504 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 40:191-203 (2005) - doi:10.3354/ame040191 Effects of Caribbean sponge secondary metabolites on bacterial surface colonization Sarah R. Kelly1, Eliane Garo2, Paul R. Jensen2, William Fenical2, Joseph R. Pawlik1,* 1Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, USA2Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego,La Jolla, California 92093, USA *Corresponding author. Email: pawlikj@uncw.edu ABSTRACT: Crude organic tissue extracts from 8 species of Caribbean sponges were assayed for inhibitory effects on surface colonization using 24 environmental marine bacterial isolates, 4 known marine invertebrate pathogens, and 1 common fouling bacterium. Each extract was tested for its effects on bacterial attachment, growth and swarming. The 24 bacterial strains were isolated from sponge surfaces, nearby substrata, or adjacent seawater. Extracts were incorporated into agar for assays of bacterial attachment and swarming. Growth-inhibition assays were conducted with the standard agar disk-diffusion assay. Of the 24 bacterial isolates, 23 were significantly inhibited from attaching to an extract-treated agar surface; 1 isolate from the surface of Agelas conifera exhibited significantly enhanced attachment on agar treated with the extract of that sponge. Sponge extracts had the least effect on growth: of 184 assays, 11 displayed significant antibacterial activity, all of these from 4 sponge species (A. conifera, Ailochroia crassa, Amphimedon compressa, and Aplysina fulva). The same isolate from the surface of A. conifera that exhibited enhanced attachment in response to the extract of that sponge exhibited inhibited growth in response to the same extract. Six out of 24 bacterial isolates exhibited swarming, the majority (67%) of which were isolated from substratum sources. Extracts from 4 of the 8 sponge species (the same species as listed above) inhibited swarming in all 6 strains, while the remaining extracts enhanced, inhibited, or had no effect on swarming depending on the strain. Bioassay-guided fractionation of the extract of A. crassa yielded 2 compounds responsible for inhibiting attachment and swarming, respectively. Ianthellin was identified as the metabolite that inhibited attachment, whereas another brominated tryosine metabolite inhibited swarming. Chemical defenses of sponges may target microbial attachment, and to a lesser degree influence swarming and growth. Non-toxic metabolites may play the greatest role in affecting bacterial epibiosis on the surfaces of marine sponges. KEY WORDS: Bacterial attachment · Bacterial swarming · Bromotyrosine metabolites · Microbial chemical defense · Quorum sensing · Antibacterial Full text in pdf format PreviousExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 40, No. 2. Online publication date: September 06, 2005 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2005 Inter-Research." @default.
- W2159719504 created "2016-06-24" @default.
- W2159719504 creator A5010613565 @default.
- W2159719504 creator A5023623091 @default.
- W2159719504 creator A5067166357 @default.
- W2159719504 creator A5067356378 @default.
- W2159719504 creator A5091787045 @default.
- W2159719504 date "2005-01-01" @default.
- W2159719504 modified "2023-09-26" @default.
- W2159719504 title "Effects of Caribbean sponge secondary metabolites on bacterial surface colonization" @default.
- W2159719504 cites W130350197 @default.
- W2159719504 cites W1531858717 @default.
- W2159719504 cites W157061243 @default.
- W2159719504 cites W1585352139 @default.
- W2159719504 cites W1837827509 @default.
- W2159719504 cites W1972836034 @default.
- W2159719504 cites W1976605889 @default.
- W2159719504 cites W1979019348 @default.
- W2159719504 cites W1986258214 @default.
- W2159719504 cites W1989251420 @default.
- W2159719504 cites W1990829665 @default.
- W2159719504 cites W2008941851 @default.
- W2159719504 cites W2013290234 @default.
- W2159719504 cites W2034607779 @default.
- W2159719504 cites W2035099337 @default.
- W2159719504 cites W2036469630 @default.
- W2159719504 cites W2038124483 @default.
- W2159719504 cites W2040465414 @default.
- W2159719504 cites W2050097582 @default.
- W2159719504 cites W2061958037 @default.
- W2159719504 cites W2066621240 @default.
- W2159719504 cites W2068420094 @default.
- W2159719504 cites W2068467616 @default.
- W2159719504 cites W2069115501 @default.
- W2159719504 cites W2069198388 @default.
- W2159719504 cites W2075835456 @default.
- W2159719504 cites W2080389975 @default.
- W2159719504 cites W2082179573 @default.
- W2159719504 cites W2087251105 @default.
- W2159719504 cites W2090354312 @default.
- W2159719504 cites W2091062968 @default.
- W2159719504 cites W2101772959 @default.
- W2159719504 cites W2111139603 @default.
- W2159719504 cites W2119365294 @default.
- W2159719504 cites W2125268958 @default.
- W2159719504 cites W2133566955 @default.
- W2159719504 cites W2146684611 @default.
- W2159719504 cites W2147664587 @default.
- W2159719504 cites W2147757048 @default.
- W2159719504 cites W2153228000 @default.
- W2159719504 cites W2161288621 @default.
- W2159719504 cites W2168048963 @default.
- W2159719504 cites W2402259104 @default.
- W2159719504 cites W2493242409 @default.
- W2159719504 cites W2521431003 @default.
- W2159719504 cites W2887080305 @default.
- W2159719504 cites W60946710 @default.
- W2159719504 doi "https://doi.org/10.3354/ame040191" @default.
- W2159719504 hasPublicationYear "2005" @default.
- W2159719504 type Work @default.
- W2159719504 sameAs 2159719504 @default.
- W2159719504 citedByCount "50" @default.
- W2159719504 countsByYear W21597195042012 @default.
- W2159719504 countsByYear W21597195042013 @default.
- W2159719504 countsByYear W21597195042014 @default.
- W2159719504 countsByYear W21597195042015 @default.
- W2159719504 countsByYear W21597195042016 @default.
- W2159719504 countsByYear W21597195042018 @default.
- W2159719504 countsByYear W21597195042019 @default.
- W2159719504 countsByYear W21597195042020 @default.
- W2159719504 countsByYear W21597195042021 @default.
- W2159719504 countsByYear W21597195042022 @default.
- W2159719504 crossrefType "journal-article" @default.
- W2159719504 hasAuthorship W2159719504A5010613565 @default.
- W2159719504 hasAuthorship W2159719504A5023623091 @default.
- W2159719504 hasAuthorship W2159719504A5067166357 @default.
- W2159719504 hasAuthorship W2159719504A5067356378 @default.
- W2159719504 hasAuthorship W2159719504A5091787045 @default.
- W2159719504 hasBestOaLocation W21597195041 @default.
- W2159719504 hasConcept C153568844 @default.
- W2159719504 hasConcept C172269249 @default.
- W2159719504 hasConcept C18903297 @default.
- W2159719504 hasConcept C2776927270 @default.
- W2159719504 hasConcept C2777367657 @default.
- W2159719504 hasConcept C2778660310 @default.
- W2159719504 hasConcept C2778849931 @default.
- W2159719504 hasConcept C2910844273 @default.
- W2159719504 hasConcept C523546767 @default.
- W2159719504 hasConcept C54355233 @default.
- W2159719504 hasConcept C58123911 @default.
- W2159719504 hasConcept C59822182 @default.
- W2159719504 hasConcept C86803240 @default.
- W2159719504 hasConcept C89423630 @default.
- W2159719504 hasConceptScore W2159719504C153568844 @default.
- W2159719504 hasConceptScore W2159719504C172269249 @default.
- W2159719504 hasConceptScore W2159719504C18903297 @default.
- W2159719504 hasConceptScore W2159719504C2776927270 @default.
- W2159719504 hasConceptScore W2159719504C2777367657 @default.