Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159723742> ?p ?o ?g. }
- W2159723742 abstract "This paper is concerned with power-weighted weight functionals associated with a minimal graph spanning a random sample of n points from a general multivariate Lebesgue density f over [0;1] d . It is known that under broad conditions, when the functional applies power exponent ∞ 2 (1;d) to the graph edge lengths, the log of the functional normalized by n (di∞)=d is a strongly consistent estimator of the R ´ enyi entropy of order fi = (di∞)=d. In this paper, we investigate almost sure (a.s.) and Lp-norm (r.m.s. for p = 2) convergence rates of this functional. In particular, when 1 • ∞ • d i 1, we show that over the space of compacted supported multivariate densities f such that f 2 §d(fl;L) (the space of H¨ older continuous functions), 0 < fl • 1, the Lp-norm convergence rate is bounded above by O i n ififl=(fifl+1) 1=d) ¢ . We obtain similar rate bounds for minimal graph approximations implemented by a progressive divide-and-conquer partitioning heuristic. We also obtain asymptotic lower bounds for the respective rates of convergence, using minimax techniques from nonparametric function estimation. In addition to Euclidean optimization problems, these results have application to non-parametric entropy and information divergence estimation; adaptive vector quantization; pattern recognition; and computational geometry." @default.
- W2159723742 created "2016-06-24" @default.
- W2159723742 creator A5076487065 @default.
- W2159723742 creator A5077692655 @default.
- W2159723742 creator A5082328023 @default.
- W2159723742 date "2002-01-01" @default.
- W2159723742 modified "2023-09-26" @default.
- W2159723742 title "Convergence rates of minimal graphs with random vertices" @default.
- W2159723742 cites W1495241956 @default.
- W2159723742 cites W1514350310 @default.
- W2159723742 cites W1538452572 @default.
- W2159723742 cites W1546846082 @default.
- W2159723742 cites W1551286418 @default.
- W2159723742 cites W1551519020 @default.
- W2159723742 cites W1555033159 @default.
- W2159723742 cites W1576475658 @default.
- W2159723742 cites W1634005169 @default.
- W2159723742 cites W191129667 @default.
- W2159723742 cites W1956534526 @default.
- W2159723742 cites W1972969203 @default.
- W2159723742 cites W1981648336 @default.
- W2159723742 cites W1985155694 @default.
- W2159723742 cites W1992338978 @default.
- W2159723742 cites W1992490235 @default.
- W2159723742 cites W1999583241 @default.
- W2159723742 cites W2003863333 @default.
- W2159723742 cites W2005269542 @default.
- W2159723742 cites W2014068360 @default.
- W2159723742 cites W2014677939 @default.
- W2159723742 cites W2022853835 @default.
- W2159723742 cites W2026605536 @default.
- W2159723742 cites W2029565994 @default.
- W2159723742 cites W2034177275 @default.
- W2159723742 cites W2060677448 @default.
- W2159723742 cites W2069473596 @default.
- W2159723742 cites W2075839890 @default.
- W2159723742 cites W2078729747 @default.
- W2159723742 cites W2100620757 @default.
- W2159723742 cites W2117812871 @default.
- W2159723742 cites W2122882636 @default.
- W2159723742 cites W2132425342 @default.
- W2159723742 cites W2137779614 @default.
- W2159723742 cites W2142228262 @default.
- W2159723742 cites W2143022286 @default.
- W2159723742 cites W2143037347 @default.
- W2159723742 cites W2147258429 @default.
- W2159723742 cites W2171554063 @default.
- W2159723742 cites W2336509789 @default.
- W2159723742 cites W2573715514 @default.
- W2159723742 cites W2608724236 @default.
- W2159723742 cites W2949867427 @default.
- W2159723742 cites W2970070367 @default.
- W2159723742 cites W3021722416 @default.
- W2159723742 cites W3040267042 @default.
- W2159723742 cites W307896644 @default.
- W2159723742 hasPublicationYear "2002" @default.
- W2159723742 type Work @default.
- W2159723742 sameAs 2159723742 @default.
- W2159723742 citedByCount "11" @default.
- W2159723742 countsByYear W21597237422014 @default.
- W2159723742 crossrefType "journal-article" @default.
- W2159723742 hasAuthorship W2159723742A5076487065 @default.
- W2159723742 hasAuthorship W2159723742A5077692655 @default.
- W2159723742 hasAuthorship W2159723742A5082328023 @default.
- W2159723742 hasConcept C105795698 @default.
- W2159723742 hasConcept C114614502 @default.
- W2159723742 hasConcept C118615104 @default.
- W2159723742 hasConcept C119599485 @default.
- W2159723742 hasConcept C126255220 @default.
- W2159723742 hasConcept C127162648 @default.
- W2159723742 hasConcept C127413603 @default.
- W2159723742 hasConcept C149728462 @default.
- W2159723742 hasConcept C185429906 @default.
- W2159723742 hasConcept C33923547 @default.
- W2159723742 hasConcept C57869625 @default.
- W2159723742 hasConceptScore W2159723742C105795698 @default.
- W2159723742 hasConceptScore W2159723742C114614502 @default.
- W2159723742 hasConceptScore W2159723742C118615104 @default.
- W2159723742 hasConceptScore W2159723742C119599485 @default.
- W2159723742 hasConceptScore W2159723742C126255220 @default.
- W2159723742 hasConceptScore W2159723742C127162648 @default.
- W2159723742 hasConceptScore W2159723742C127413603 @default.
- W2159723742 hasConceptScore W2159723742C149728462 @default.
- W2159723742 hasConceptScore W2159723742C185429906 @default.
- W2159723742 hasConceptScore W2159723742C33923547 @default.
- W2159723742 hasConceptScore W2159723742C57869625 @default.
- W2159723742 hasLocation W21597237421 @default.
- W2159723742 hasOpenAccess W2159723742 @default.
- W2159723742 hasPrimaryLocation W21597237421 @default.
- W2159723742 hasRelatedWork W1551519020 @default.
- W2159723742 hasRelatedWork W1727779127 @default.
- W2159723742 hasRelatedWork W1864481278 @default.
- W2159723742 hasRelatedWork W186513846 @default.
- W2159723742 hasRelatedWork W1944894926 @default.
- W2159723742 hasRelatedWork W1947914818 @default.
- W2159723742 hasRelatedWork W1956534526 @default.
- W2159723742 hasRelatedWork W1963871118 @default.
- W2159723742 hasRelatedWork W1965555277 @default.
- W2159723742 hasRelatedWork W2003863333 @default.
- W2159723742 hasRelatedWork W2014068360 @default.