Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159741569> ?p ?o ?g. }
- W2159741569 endingPage "5461" @default.
- W2159741569 startingPage "5448" @default.
- W2159741569 abstract "Real time X-ray diffraction is used to examine kinetic barriers and metastability in periodic silica/surfactant nanophase composites. These materials, which are the precursors to ordered mesoporous silicas, are synthesized in a P6mm hexagonal structure using a range of base concentrations. When the composites are heated under hydrothermal conditions, they are observed first to anneal into a more ordered hexagonal structure and then to undergo a hexagonal-to-lamellar phase transition. The transition and annealing are followed in situ through low-angle X-ray diffraction as the materials are heated under a linear temperature ramp. From the variation in diffraction peak intensities with time as a function of ramp rate, it is possible to determine activation energies for the phase transition and for annealing using the Ozawa method. Activation energies both for annealing and for the hexagonal-to-lamellar phase transformation are found to correlate with the base concentration used to synthesize the composites. Materials made at the lowest pH show an activation energy of 163 ± 3 kJ/mol for the hexagonal-to-lamellar phase transition, whereas materials made at the highest pH show an activation energy of only 106 ± 3 kJ/mol. This result can be explained by a more condensed framework in materials synthesized at lower pH and, thus, the need to hydrolyze more silioxane linkages in order for the material to rearrange. The annealing process shows the opposite dependence on pH, with the highest activation energies observed for those materials synthesized at the highest pH (Ea = 58 ± 12 kJ/mol for materials synthesized at the lowest pH and 80 ± 16 kJ/mol for materials synthesized at the highest pH). This result can be explained by postulating that the activation energy for annealing is related to silica condensation, rather than silica hydrolysis. Higher-level kinetic analyses allow us to extract an activation energy from each temperature ramp and, thus, to examine the chemical changes that occur during the heating process. Composites made at the highest synthesis pHs have activation energies that increase with slower ramp rates, suggesting that silica condensation occurs during heating, which, in turn, increases the activation energies. Composites made at the lowest synthesis pHs, in contrast, have activation energies that decrease with slower ramp rates, suggesting that silica hydrolysis occurs during heating, which, in turn, lowers the activation energies. These ideas are corroborated by ex situ 29Si MAS NMR experiments, which show that materials made at the lowest pH start out with the most condensed silica framework. During annealing, the degree of condensation increases, but at the start of the phase transformation, the degree of framework condensation again decreases. This work provides a basis for understanding the relationship between synthetic parameters, silica chemistry, and the stability of silica/surfactant nanostructured composites." @default.
- W2159741569 created "2016-06-24" @default.
- W2159741569 creator A5039320439 @default.
- W2159741569 creator A5062017340 @default.
- W2159741569 creator A5086521940 @default.
- W2159741569 date "2000-05-19" @default.
- W2159741569 modified "2023-10-10" @default.
- W2159741569 title "Effect of Framework Polymerization on the Phase Stability of Periodic Silica/Surfactant Nanostructured Composites" @default.
- W2159741569 cites W1613744352 @default.
- W2159741569 cites W1975915589 @default.
- W2159741569 cites W1976492630 @default.
- W2159741569 cites W1978972915 @default.
- W2159741569 cites W1982175365 @default.
- W2159741569 cites W1982994781 @default.
- W2159741569 cites W1987323242 @default.
- W2159741569 cites W1988360609 @default.
- W2159741569 cites W1994349088 @default.
- W2159741569 cites W1995041236 @default.
- W2159741569 cites W2001907233 @default.
- W2159741569 cites W2008854263 @default.
- W2159741569 cites W2011804950 @default.
- W2159741569 cites W2012302306 @default.
- W2159741569 cites W2013464627 @default.
- W2159741569 cites W2016047193 @default.
- W2159741569 cites W2018481193 @default.
- W2159741569 cites W2018669437 @default.
- W2159741569 cites W2024908520 @default.
- W2159741569 cites W2026202146 @default.
- W2159741569 cites W2028933086 @default.
- W2159741569 cites W2034245118 @default.
- W2159741569 cites W2034796791 @default.
- W2159741569 cites W2037823687 @default.
- W2159741569 cites W2040727351 @default.
- W2159741569 cites W2042602209 @default.
- W2159741569 cites W2042863387 @default.
- W2159741569 cites W2046273496 @default.
- W2159741569 cites W2054111649 @default.
- W2159741569 cites W2060825256 @default.
- W2159741569 cites W2062719459 @default.
- W2159741569 cites W2067925603 @default.
- W2159741569 cites W2070662104 @default.
- W2159741569 cites W2072761279 @default.
- W2159741569 cites W2073357292 @default.
- W2159741569 cites W2074269370 @default.
- W2159741569 cites W2078740165 @default.
- W2159741569 cites W2081200193 @default.
- W2159741569 cites W2085948657 @default.
- W2159741569 cites W2092716313 @default.
- W2159741569 cites W2099761320 @default.
- W2159741569 cites W2100431223 @default.
- W2159741569 cites W2167336744 @default.
- W2159741569 cites W2312639669 @default.
- W2159741569 cites W2952853374 @default.
- W2159741569 doi "https://doi.org/10.1021/jp9944379" @default.
- W2159741569 hasPublicationYear "2000" @default.
- W2159741569 type Work @default.
- W2159741569 sameAs 2159741569 @default.
- W2159741569 citedByCount "44" @default.
- W2159741569 countsByYear W21597415692015 @default.
- W2159741569 crossrefType "journal-article" @default.
- W2159741569 hasAuthorship W2159741569A5039320439 @default.
- W2159741569 hasAuthorship W2159741569A5062017340 @default.
- W2159741569 hasAuthorship W2159741569A5086521940 @default.
- W2159741569 hasConcept C120665830 @default.
- W2159741569 hasConcept C121332964 @default.
- W2159741569 hasConcept C127413603 @default.
- W2159741569 hasConcept C128765274 @default.
- W2159741569 hasConcept C147789679 @default.
- W2159741569 hasConcept C149288129 @default.
- W2159741569 hasConcept C159985019 @default.
- W2159741569 hasConcept C178790620 @default.
- W2159741569 hasConcept C185592680 @default.
- W2159741569 hasConcept C192562407 @default.
- W2159741569 hasConcept C207114421 @default.
- W2159741569 hasConcept C2777855556 @default.
- W2159741569 hasConcept C2780134926 @default.
- W2159741569 hasConcept C42360764 @default.
- W2159741569 hasConcept C58226133 @default.
- W2159741569 hasConcept C77851909 @default.
- W2159741569 hasConcept C8010536 @default.
- W2159741569 hasConcept C89464430 @default.
- W2159741569 hasConcept C95121573 @default.
- W2159741569 hasConcept C97355855 @default.
- W2159741569 hasConceptScore W2159741569C120665830 @default.
- W2159741569 hasConceptScore W2159741569C121332964 @default.
- W2159741569 hasConceptScore W2159741569C127413603 @default.
- W2159741569 hasConceptScore W2159741569C128765274 @default.
- W2159741569 hasConceptScore W2159741569C147789679 @default.
- W2159741569 hasConceptScore W2159741569C149288129 @default.
- W2159741569 hasConceptScore W2159741569C159985019 @default.
- W2159741569 hasConceptScore W2159741569C178790620 @default.
- W2159741569 hasConceptScore W2159741569C185592680 @default.
- W2159741569 hasConceptScore W2159741569C192562407 @default.
- W2159741569 hasConceptScore W2159741569C207114421 @default.
- W2159741569 hasConceptScore W2159741569C2777855556 @default.
- W2159741569 hasConceptScore W2159741569C2780134926 @default.
- W2159741569 hasConceptScore W2159741569C42360764 @default.
- W2159741569 hasConceptScore W2159741569C58226133 @default.