Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159982425> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2159982425 endingPage "984" @default.
- W2159982425 startingPage "968" @default.
- W2159982425 abstract "Weconsidermultipleresonancescatteringwithcom- pletefrequencyredistribution(CFR)inasemi-inniteconserva- tiveatmosphere(photondestructionprobabilityI = 0)withthe sources at innite depth. The polarization arising in resonance scatteringiscompletelyaccountedfor.Theproblemweconsider is the resonance-scattering counterpart of the Chandrasekhar- Sobolev problem of Rayleigh scattering in the conservative at- mosphere. The numerical data on the matrix source function S()intheatmospherewithconservativedipoleresonancescat- tering (the depolarization parameter W = 1) are presented; we assume Doppler prole. The source matrix is found by a non-iterative numerical solution of the matrix Wiener-Hopf integral equation with the matrix -operator. Depth depen- dence of the elements of the source matrix S() is discussed. Some unexpected peculiarities are revealed in the behavior of its polarization terms. The matrix I(z) which is the general- ization of the Chandrasekhar H-function to the case of polar- ized resonance scattering is found by the iterative solution of the Chandrasekhar-type nonlinear matrix integral equation. We present high-accuracy (5 s.f.) numerical data on I(z) for dipole conservative scattering with the Doppler prole. The center- to-limb variation of the degree of polarization in the core of a Doppler broadened resonance line is found. In conservative case, the limiting limb polarization 0 in the core of such a line is 9.4430% (for W = 1). The dependence of 0 on the depo- larization parameter W is found. Simple interpolation formula, 0 = 9:443 38:05 p I %, is suggested for the limb polariza- tion of the radiation emerging from an isothermal nearly con- servative atmosphere (I 1 ;W = 1). The data on I(z) are used to nd the polarization line proles and to trace their center-to-limb variation. The asymptotic expansions of S() for !1 (deep layers) and of I(z) for z !1 (line wings) are found for the case of the Doppler prole. The coefcients of the expansions are determined by recursion relations. The numeri- cal data on the accuracy and the domain of applicability of the asymptotic theory are presented." @default.
- W2159982425 created "2016-06-24" @default.
- W2159982425 creator A5040565833 @default.
- W2159982425 creator A5057568558 @default.
- W2159982425 creator A5076072142 @default.
- W2159982425 date "1997-05-01" @default.
- W2159982425 modified "2023-09-23" @default.
- W2159982425 title "Polarized line formation by resonance scattering II. Conservative case" @default.
- W2159982425 cites W1592906493 @default.
- W2159982425 cites W2120062331 @default.
- W2159982425 cites W3135227555 @default.
- W2159982425 hasPublicationYear "1997" @default.
- W2159982425 type Work @default.
- W2159982425 sameAs 2159982425 @default.
- W2159982425 citedByCount "5" @default.
- W2159982425 crossrefType "journal-article" @default.
- W2159982425 hasAuthorship W2159982425A5040565833 @default.
- W2159982425 hasAuthorship W2159982425A5057568558 @default.
- W2159982425 hasAuthorship W2159982425A5076072142 @default.
- W2159982425 hasConcept C121332964 @default.
- W2159982425 hasConcept C147789679 @default.
- W2159982425 hasConcept C150846664 @default.
- W2159982425 hasConcept C173523689 @default.
- W2159982425 hasConcept C185592680 @default.
- W2159982425 hasConcept C191486275 @default.
- W2159982425 hasConcept C197445014 @default.
- W2159982425 hasConcept C205049153 @default.
- W2159982425 hasConcept C44870925 @default.
- W2159982425 hasConcept C62520636 @default.
- W2159982425 hasConcept C67576285 @default.
- W2159982425 hasConceptScore W2159982425C121332964 @default.
- W2159982425 hasConceptScore W2159982425C147789679 @default.
- W2159982425 hasConceptScore W2159982425C150846664 @default.
- W2159982425 hasConceptScore W2159982425C173523689 @default.
- W2159982425 hasConceptScore W2159982425C185592680 @default.
- W2159982425 hasConceptScore W2159982425C191486275 @default.
- W2159982425 hasConceptScore W2159982425C197445014 @default.
- W2159982425 hasConceptScore W2159982425C205049153 @default.
- W2159982425 hasConceptScore W2159982425C44870925 @default.
- W2159982425 hasConceptScore W2159982425C62520636 @default.
- W2159982425 hasConceptScore W2159982425C67576285 @default.
- W2159982425 hasIssue "3" @default.
- W2159982425 hasLocation W21599824251 @default.
- W2159982425 hasOpenAccess W2159982425 @default.
- W2159982425 hasPrimaryLocation W21599824251 @default.
- W2159982425 hasRelatedWork W1618217258 @default.
- W2159982425 hasRelatedWork W162229289 @default.
- W2159982425 hasRelatedWork W1969078886 @default.
- W2159982425 hasRelatedWork W1987262675 @default.
- W2159982425 hasRelatedWork W1988286900 @default.
- W2159982425 hasRelatedWork W2004878716 @default.
- W2159982425 hasRelatedWork W2019620933 @default.
- W2159982425 hasRelatedWork W2027490170 @default.
- W2159982425 hasRelatedWork W2064246748 @default.
- W2159982425 hasRelatedWork W2065626990 @default.
- W2159982425 hasRelatedWork W2083807175 @default.
- W2159982425 hasRelatedWork W2116510294 @default.
- W2159982425 hasRelatedWork W2130120695 @default.
- W2159982425 hasRelatedWork W2133083942 @default.
- W2159982425 hasRelatedWork W2410930737 @default.
- W2159982425 hasRelatedWork W2474890577 @default.
- W2159982425 hasRelatedWork W2476997441 @default.
- W2159982425 hasRelatedWork W3100482807 @default.
- W2159982425 hasRelatedWork W3135227555 @default.
- W2159982425 hasRelatedWork W4708014 @default.
- W2159982425 hasVolume "321" @default.
- W2159982425 isParatext "false" @default.
- W2159982425 isRetracted "false" @default.
- W2159982425 magId "2159982425" @default.
- W2159982425 workType "article" @default.