Matches in SemOpenAlex for { <https://semopenalex.org/work/W2159998603> ?p ?o ?g. }
- W2159998603 endingPage "450" @default.
- W2159998603 startingPage "411" @default.
- W2159998603 abstract "We address instance-based learning from a perceptual organization standpoint and present methods for dimensionality estimation, manifold learning and function approximation. Under our approach, manifolds in high-dimensional spaces are inferred by estimating geometric relationships among the input instances. Unlike conventional manifold learning, we do not perform dimensionality reduction, but instead perform all operations in the original input space. For this purpose we employ a novel formulation of tensor voting, which allows an N-D implementation. Tensor voting is a perceptual organization framework that has mostly been applied to computer vision problems. Analyzing the estimated local structure at the inputs, we are able to obtain reliable dimensionality estimates at each instance, instead of a global estimate for the entire data set. Moreover, these local dimensionality and structure estimates enable us to measure geodesic distances and perform nonlinear interpolation for data sets with varying density, outliers, perturbation and intersections, that cannot be handled by state-of-the-art methods. Quantitative results on the estimation of local manifold structure using ground truth data are presented. In addition, we compare our approach with several leading methods for manifold learning at the task of measuring geodesic distances. Finally, we show competitive function approximation results on real data." @default.
- W2159998603 created "2016-06-24" @default.
- W2159998603 creator A5006918685 @default.
- W2159998603 creator A5024073593 @default.
- W2159998603 date "2010-03-01" @default.
- W2159998603 modified "2023-09-24" @default.
- W2159998603 title "Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting" @default.
- W2159998603 cites W133270979 @default.
- W2159998603 cites W1486089539 @default.
- W2159998603 cites W1497915382 @default.
- W2159998603 cites W1505873999 @default.
- W2159998603 cites W1595132914 @default.
- W2159998603 cites W1648445109 @default.
- W2159998603 cites W1689445748 @default.
- W2159998603 cites W1748744376 @default.
- W2159998603 cites W1973310094 @default.
- W2159998603 cites W2001141328 @default.
- W2159998603 cites W2017588182 @default.
- W2159998603 cites W2034836133 @default.
- W2159998603 cites W2035553724 @default.
- W2159998603 cites W2035990705 @default.
- W2159998603 cites W2036835491 @default.
- W2159998603 cites W2053186076 @default.
- W2159998603 cites W2054573168 @default.
- W2159998603 cites W2060565253 @default.
- W2159998603 cites W2063532964 @default.
- W2159998603 cites W2077776048 @default.
- W2159998603 cites W2084812512 @default.
- W2159998603 cites W2096022469 @default.
- W2159998603 cites W2097308346 @default.
- W2159998603 cites W2102438258 @default.
- W2159998603 cites W2107432971 @default.
- W2159998603 cites W2108966602 @default.
- W2159998603 cites W2109703216 @default.
- W2159998603 cites W2112027492 @default.
- W2159998603 cites W2112148214 @default.
- W2159998603 cites W2113030220 @default.
- W2159998603 cites W2115845039 @default.
- W2159998603 cites W2116402476 @default.
- W2159998603 cites W2116873130 @default.
- W2159998603 cites W2120368313 @default.
- W2159998603 cites W2120777512 @default.
- W2159998603 cites W2123687908 @default.
- W2159998603 cites W2125315716 @default.
- W2159998603 cites W2126357135 @default.
- W2159998603 cites W2127905518 @default.
- W2159998603 cites W2128197592 @default.
- W2159998603 cites W2129104643 @default.
- W2159998603 cites W2129564505 @default.
- W2159998603 cites W2130567155 @default.
- W2159998603 cites W2134394617 @default.
- W2159998603 cites W2136719756 @default.
- W2159998603 cites W2137242837 @default.
- W2159998603 cites W2138887330 @default.
- W2159998603 cites W2140095548 @default.
- W2159998603 cites W2140826205 @default.
- W2159998603 cites W2140966579 @default.
- W2159998603 cites W2141513596 @default.
- W2159998603 cites W2143833218 @default.
- W2159998603 cites W2143956139 @default.
- W2159998603 cites W2148694408 @default.
- W2159998603 cites W2149544245 @default.
- W2159998603 cites W2149940454 @default.
- W2159998603 cites W2154872931 @default.
- W2159998603 cites W2155008293 @default.
- W2159998603 cites W2156287497 @default.
- W2159998603 cites W2156838815 @default.
- W2159998603 cites W2156909104 @default.
- W2159998603 cites W2157169955 @default.
- W2159998603 cites W2157498577 @default.
- W2159998603 cites W2158188662 @default.
- W2159998603 cites W2161767008 @default.
- W2159998603 cites W2166116275 @default.
- W2159998603 cites W2167804690 @default.
- W2159998603 cites W2169351022 @default.
- W2159998603 cites W2170237252 @default.
- W2159998603 cites W2218277484 @default.
- W2159998603 cites W2295046650 @default.
- W2159998603 cites W2427881153 @default.
- W2159998603 cites W2622604310 @default.
- W2159998603 cites W2982720039 @default.
- W2159998603 cites W3009784374 @default.
- W2159998603 cites W3013880646 @default.
- W2159998603 hasPublicationYear "2010" @default.
- W2159998603 type Work @default.
- W2159998603 sameAs 2159998603 @default.
- W2159998603 citedByCount "27" @default.
- W2159998603 countsByYear W21599986032012 @default.
- W2159998603 countsByYear W21599986032013 @default.
- W2159998603 countsByYear W21599986032014 @default.
- W2159998603 countsByYear W21599986032015 @default.
- W2159998603 countsByYear W21599986032016 @default.
- W2159998603 countsByYear W21599986032017 @default.
- W2159998603 countsByYear W21599986032018 @default.
- W2159998603 countsByYear W21599986032019 @default.
- W2159998603 countsByYear W21599986032021 @default.
- W2159998603 crossrefType "journal-article" @default.
- W2159998603 hasAuthorship W2159998603A5006918685 @default.