Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160053920> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2160053920 abstract "Nowadays, huge amounts of information from different industrial processes are stored into databases and companies can improve their production efficiency by mining some new knowledge from this information. However, when these databases becomes too large, it is not efficient to process all the available data with practical data mining applications. As a solution, different approaches for intelligent selection of training data for model fitting have to be developed. In this article, training instances are selected to fit predictive regression models developed for optimization of the steel manufacturing process settings beforehand, and the selection is approached from a clustering point of view. Because basic k-means clustering was found to consume too much time and memory for the purpose, a new algorithm was developed to divide the data coarsely, after which k-means clustering could be performed. The instances were selected using the cluster structure by weighting more the observations from scattered and separated clusters. The study shows that by using this kind of approach to data set selection, the prediction accuracy of the models will get even better. It was noticed that only a quarter of the data, selected with our approach, could be used to achieve results comparable with a reference case, while the procedure can be easily developed for an actual industrial environment." @default.
- W2160053920 created "2016-06-24" @default.
- W2160053920 creator A5006069657 @default.
- W2160053920 creator A5022293318 @default.
- W2160053920 creator A5053068969 @default.
- W2160053920 creator A5053650091 @default.
- W2160053920 date "2008-06-01" @default.
- W2160053920 modified "2023-10-18" @default.
- W2160053920 title "Two-level clustering approach to training data instance selection: A case study for the steel industry" @default.
- W2160053920 cites W1547560093 @default.
- W2160053920 cites W1975316446 @default.
- W2160053920 cites W2026754522 @default.
- W2160053920 cites W2101465260 @default.
- W2160053920 cites W2122496402 @default.
- W2160053920 cites W2134086158 @default.
- W2160053920 cites W2158724449 @default.
- W2160053920 cites W2243662349 @default.
- W2160053920 cites W268940062 @default.
- W2160053920 doi "https://doi.org/10.1109/ijcnn.2008.4634228" @default.
- W2160053920 hasPublicationYear "2008" @default.
- W2160053920 type Work @default.
- W2160053920 sameAs 2160053920 @default.
- W2160053920 citedByCount "10" @default.
- W2160053920 countsByYear W21600539202015 @default.
- W2160053920 countsByYear W21600539202020 @default.
- W2160053920 countsByYear W21600539202021 @default.
- W2160053920 countsByYear W21600539202022 @default.
- W2160053920 crossrefType "proceedings-article" @default.
- W2160053920 hasAuthorship W2160053920A5006069657 @default.
- W2160053920 hasAuthorship W2160053920A5022293318 @default.
- W2160053920 hasAuthorship W2160053920A5053068969 @default.
- W2160053920 hasAuthorship W2160053920A5053650091 @default.
- W2160053920 hasConcept C111919701 @default.
- W2160053920 hasConcept C119857082 @default.
- W2160053920 hasConcept C124101348 @default.
- W2160053920 hasConcept C126838900 @default.
- W2160053920 hasConcept C154945302 @default.
- W2160053920 hasConcept C177264268 @default.
- W2160053920 hasConcept C183115368 @default.
- W2160053920 hasConcept C199360897 @default.
- W2160053920 hasConcept C2524010 @default.
- W2160053920 hasConcept C28719098 @default.
- W2160053920 hasConcept C33923547 @default.
- W2160053920 hasConcept C41008148 @default.
- W2160053920 hasConcept C71924100 @default.
- W2160053920 hasConcept C73555534 @default.
- W2160053920 hasConcept C81917197 @default.
- W2160053920 hasConcept C98045186 @default.
- W2160053920 hasConceptScore W2160053920C111919701 @default.
- W2160053920 hasConceptScore W2160053920C119857082 @default.
- W2160053920 hasConceptScore W2160053920C124101348 @default.
- W2160053920 hasConceptScore W2160053920C126838900 @default.
- W2160053920 hasConceptScore W2160053920C154945302 @default.
- W2160053920 hasConceptScore W2160053920C177264268 @default.
- W2160053920 hasConceptScore W2160053920C183115368 @default.
- W2160053920 hasConceptScore W2160053920C199360897 @default.
- W2160053920 hasConceptScore W2160053920C2524010 @default.
- W2160053920 hasConceptScore W2160053920C28719098 @default.
- W2160053920 hasConceptScore W2160053920C33923547 @default.
- W2160053920 hasConceptScore W2160053920C41008148 @default.
- W2160053920 hasConceptScore W2160053920C71924100 @default.
- W2160053920 hasConceptScore W2160053920C73555534 @default.
- W2160053920 hasConceptScore W2160053920C81917197 @default.
- W2160053920 hasConceptScore W2160053920C98045186 @default.
- W2160053920 hasLocation W21600539201 @default.
- W2160053920 hasOpenAccess W2160053920 @default.
- W2160053920 hasPrimaryLocation W21600539201 @default.
- W2160053920 hasRelatedWork W2132118959 @default.
- W2160053920 hasRelatedWork W2283281090 @default.
- W2160053920 hasRelatedWork W2365831248 @default.
- W2160053920 hasRelatedWork W2370909876 @default.
- W2160053920 hasRelatedWork W2498960034 @default.
- W2160053920 hasRelatedWork W2608158510 @default.
- W2160053920 hasRelatedWork W2874540278 @default.
- W2160053920 hasRelatedWork W3005667058 @default.
- W2160053920 hasRelatedWork W3168791910 @default.
- W2160053920 hasRelatedWork W4205663668 @default.
- W2160053920 isParatext "false" @default.
- W2160053920 isRetracted "false" @default.
- W2160053920 magId "2160053920" @default.
- W2160053920 workType "article" @default.