Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160214904> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2160214904 endingPage "250" @default.
- W2160214904 startingPage "250" @default.
- W2160214904 abstract "Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models are successfully used to model anomalous diffusion and spatial heterogeneity in different physical contexts. We develop a fractional model based on the Fisher--Kolmogoroff equation, analyse it for its wavespeed properties, and relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments. References R. J. Adler, R. E. Feldman and M. S. Taqqu. A practical guide to heavy tails: Statistical techniques and applications. Birkauser, 1998. I. J. Allan and D. F. Newgreen. The origin and differentiation of enteric neurons of the intestine of the fowl embryo. The American Journal of Anatomy , 157, 137--154, 1980. doi:10.1002/aja.1001570203 B. J. Binder, K. A. Landman, M. J. Simpson, M. Mariani and D. F. Newgreen. Modeling proliferative tissue growth: A general approach and an avian case study. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) , 78(3), 1--13, 2008. doi:10.1103/PhysRevE.78.031912 M. A. Breau, A. Dahmani, F. Broders--Bondon, J. P. Thiery and S. Dufour. $beta 1$ integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells. Development , 136, 2791--2801, 2009. doi:10.1242/dev.031419 K. Burrage, N. Hale and D. Kay. An efficient implementation of an implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM Journal on Scientific Computing , 34(4), A2145--A2172. doi:10.1137/110847007 N. R. Druckenbrod and M. L. Epstein. The patterns of neural crest advance in the cecum and colon. Developmental Biology , 287, 125--133, 2005. doi:10.1016/j.ydbio.2005.08.040 H. Engler. On the speed of spread for fractional reaction-diffusion equations. International Journal of Differential Equations , 2010, Article ID 315421, 2010. doi:10.1155/2010/315421 M. Ilic, F. Liu, I. Turner and V. Anh. Numerical approximation of a fractional-in-space diffusion equation (II)--with nonhomogeneous boundary conditions. Fractional Calculus and Applied Analysis , 9, 333--349, 2006. http://eprints.qut.edu.au/23835/ P. K. Maini, D. L. S. McElwain and D. Leavesley. Travelling waves in a wound healing assay. Applied Mathematics Letters , 17, 575--580, 2004. doi:10.1016/S0893-9659(04)90128-0 R. McLennan, L. Dyson, K. W. Prather, J. A. Morrison, R. E. Baker, P. K. Maini and P. M. Kulesa. Multiscale mechanisms of cell migration during development: theory and experiment. Development , 139, 2935--2944, 2012. doi:10.1242/dev.081471 J. D. Murray. Mathematical Biology I and II. Springer Verlag, 2003. M. J. Simpson, D. C. Zhang, M. Mariani, K. A. Landman and D. F. Newgreen. Cell proliferation drives neural crest cell invasion of the intestine. Developmental Biology , 302, 553--568, 2007. doi:10.1016/j.ydbio.2006.10.017 H. M. Young, A. J. Bergner, R. B. Anderson, H. Enomoto, J. Milbrandt, D. F. Newgreen and P. M. Whitington. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Developmental Biology , 270, 455--473, 2004. doi:10.1016/j.ydbio.2004.03.015 P. Zhuang, F. Liu, V. Anh and I. Turner. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Journal on Numerical Analysis , 47(3), 1760--1781, 2009. doi:10.1137/080730597" @default.
- W2160214904 created "2016-06-24" @default.
- W2160214904 creator A5003330950 @default.
- W2160214904 creator A5016673913 @default.
- W2160214904 creator A5084710724 @default.
- W2160214904 date "2013-06-02" @default.
- W2160214904 modified "2023-09-23" @default.
- W2160214904 title "Fractional models for the migration of biological cells in complex spatial domains" @default.
- W2160214904 cites W1966742876 @default.
- W2160214904 cites W1984995410 @default.
- W2160214904 cites W1994902531 @default.
- W2160214904 cites W1996960280 @default.
- W2160214904 cites W2004965883 @default.
- W2160214904 cites W2021735811 @default.
- W2160214904 cites W2035681587 @default.
- W2160214904 cites W2059177632 @default.
- W2160214904 cites W2086921236 @default.
- W2160214904 cites W2089944865 @default.
- W2160214904 cites W2105421586 @default.
- W2160214904 cites W2765519574 @default.
- W2160214904 cites W635609117 @default.
- W2160214904 doi "https://doi.org/10.21914/anziamj.v54i0.6283" @default.
- W2160214904 hasPublicationYear "2013" @default.
- W2160214904 type Work @default.
- W2160214904 sameAs 2160214904 @default.
- W2160214904 citedByCount "8" @default.
- W2160214904 countsByYear W21602149042014 @default.
- W2160214904 countsByYear W21602149042015 @default.
- W2160214904 countsByYear W21602149042017 @default.
- W2160214904 countsByYear W21602149042018 @default.
- W2160214904 countsByYear W21602149042019 @default.
- W2160214904 countsByYear W21602149042020 @default.
- W2160214904 crossrefType "journal-article" @default.
- W2160214904 hasAuthorship W2160214904A5003330950 @default.
- W2160214904 hasAuthorship W2160214904A5016673913 @default.
- W2160214904 hasAuthorship W2160214904A5084710724 @default.
- W2160214904 hasBestOaLocation W21602149041 @default.
- W2160214904 hasConcept C205649164 @default.
- W2160214904 hasConcept C41008148 @default.
- W2160214904 hasConceptScore W2160214904C205649164 @default.
- W2160214904 hasConceptScore W2160214904C41008148 @default.
- W2160214904 hasLocation W21602149041 @default.
- W2160214904 hasOpenAccess W2160214904 @default.
- W2160214904 hasPrimaryLocation W21602149041 @default.
- W2160214904 hasRelatedWork W2093578348 @default.
- W2160214904 hasRelatedWork W2350741829 @default.
- W2160214904 hasRelatedWork W2358668433 @default.
- W2160214904 hasRelatedWork W2376932109 @default.
- W2160214904 hasRelatedWork W2382290278 @default.
- W2160214904 hasRelatedWork W2390279801 @default.
- W2160214904 hasRelatedWork W2748952813 @default.
- W2160214904 hasRelatedWork W2766271392 @default.
- W2160214904 hasRelatedWork W2899084033 @default.
- W2160214904 hasRelatedWork W3004735627 @default.
- W2160214904 hasVolume "54" @default.
- W2160214904 isParatext "false" @default.
- W2160214904 isRetracted "false" @default.
- W2160214904 magId "2160214904" @default.
- W2160214904 workType "article" @default.