Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160277013> ?p ?o ?g. }
- W2160277013 abstract "Several different hierarchical Bayesian models can be used for the estimation of spatial risk patterns based on spatially aggregated count data. Typically, the resulting posterior distributions of the model parameters cannot be expressed in closed forms, and MCMC approaches are required for inference. However, implementations of hierarchical Bayesian models for such areal data are error-prone. Also, different implementation methods exist, and a surprisingly large variability may develop between the methods as well as between the different MCMC runs of one method. This paper has four main goals: (1) to present a point by point annotated code of two commonly used models for areal count data, namely the BYM and the Leroux models (2) to discuss technical variations in the implementation of a formula-driven sampler and to assess the variability in the posterior results from various alternative implementations (3) to give graphical tools to compare sample(r)s which complement existing convergence diagnostics and (4) to give various practical tips for implementing samplers." @default.
- W2160277013 created "2016-06-24" @default.
- W2160277013 creator A5016890115 @default.
- W2160277013 creator A5090709200 @default.
- W2160277013 date "2015-01-01" @default.
- W2160277013 modified "2023-09-27" @default.
- W2160277013 title "Pitfalls in the Implementation of Bayesian Hierarchical Modeling of Areal Count Data: An Illustration Using BYM and Leroux Models" @default.
- W2160277013 cites W1520053542 @default.
- W2160277013 cites W1549716303 @default.
- W2160277013 cites W1549853756 @default.
- W2160277013 cites W1599710294 @default.
- W2160277013 cites W1639814325 @default.
- W2160277013 cites W1695074111 @default.
- W2160277013 cites W1785118084 @default.
- W2160277013 cites W1788054578 @default.
- W2160277013 cites W1853715423 @default.
- W2160277013 cites W1866922380 @default.
- W2160277013 cites W1951294597 @default.
- W2160277013 cites W1963962539 @default.
- W2160277013 cites W1977414200 @default.
- W2160277013 cites W1980812683 @default.
- W2160277013 cites W1985905165 @default.
- W2160277013 cites W2004014822 @default.
- W2160277013 cites W2004536301 @default.
- W2160277013 cites W2008703230 @default.
- W2160277013 cites W2026261408 @default.
- W2160277013 cites W2093223772 @default.
- W2160277013 cites W2093603746 @default.
- W2160277013 cites W2102386709 @default.
- W2160277013 cites W2111302064 @default.
- W2160277013 cites W2114192876 @default.
- W2160277013 cites W2130416410 @default.
- W2160277013 cites W2132138475 @default.
- W2160277013 cites W2133143175 @default.
- W2160277013 cites W2134828814 @default.
- W2160277013 cites W2134934579 @default.
- W2160277013 cites W2144898279 @default.
- W2160277013 cites W2148534890 @default.
- W2160277013 cites W2166414779 @default.
- W2160277013 cites W2582743722 @default.
- W2160277013 cites W3027769324 @default.
- W2160277013 doi "https://doi.org/10.18637/jss.v063.c01" @default.
- W2160277013 hasPublicationYear "2015" @default.
- W2160277013 type Work @default.
- W2160277013 sameAs 2160277013 @default.
- W2160277013 citedByCount "12" @default.
- W2160277013 countsByYear W21602770132015 @default.
- W2160277013 countsByYear W21602770132016 @default.
- W2160277013 countsByYear W21602770132017 @default.
- W2160277013 countsByYear W21602770132018 @default.
- W2160277013 countsByYear W21602770132019 @default.
- W2160277013 countsByYear W21602770132020 @default.
- W2160277013 crossrefType "journal-article" @default.
- W2160277013 hasAuthorship W2160277013A5016890115 @default.
- W2160277013 hasAuthorship W2160277013A5090709200 @default.
- W2160277013 hasBestOaLocation W21602770131 @default.
- W2160277013 hasConcept C100906024 @default.
- W2160277013 hasConcept C104317684 @default.
- W2160277013 hasConcept C105795698 @default.
- W2160277013 hasConcept C107673813 @default.
- W2160277013 hasConcept C111350023 @default.
- W2160277013 hasConcept C112313634 @default.
- W2160277013 hasConcept C119857082 @default.
- W2160277013 hasConcept C124101348 @default.
- W2160277013 hasConcept C127716648 @default.
- W2160277013 hasConcept C144986985 @default.
- W2160277013 hasConcept C154945302 @default.
- W2160277013 hasConcept C155846161 @default.
- W2160277013 hasConcept C160234255 @default.
- W2160277013 hasConcept C185592680 @default.
- W2160277013 hasConcept C188082640 @default.
- W2160277013 hasConcept C198531522 @default.
- W2160277013 hasConcept C199360897 @default.
- W2160277013 hasConcept C26713055 @default.
- W2160277013 hasConcept C2776214188 @default.
- W2160277013 hasConcept C33643355 @default.
- W2160277013 hasConcept C33923547 @default.
- W2160277013 hasConcept C41008148 @default.
- W2160277013 hasConcept C43617362 @default.
- W2160277013 hasConcept C55493867 @default.
- W2160277013 hasConceptScore W2160277013C100906024 @default.
- W2160277013 hasConceptScore W2160277013C104317684 @default.
- W2160277013 hasConceptScore W2160277013C105795698 @default.
- W2160277013 hasConceptScore W2160277013C107673813 @default.
- W2160277013 hasConceptScore W2160277013C111350023 @default.
- W2160277013 hasConceptScore W2160277013C112313634 @default.
- W2160277013 hasConceptScore W2160277013C119857082 @default.
- W2160277013 hasConceptScore W2160277013C124101348 @default.
- W2160277013 hasConceptScore W2160277013C127716648 @default.
- W2160277013 hasConceptScore W2160277013C144986985 @default.
- W2160277013 hasConceptScore W2160277013C154945302 @default.
- W2160277013 hasConceptScore W2160277013C155846161 @default.
- W2160277013 hasConceptScore W2160277013C160234255 @default.
- W2160277013 hasConceptScore W2160277013C185592680 @default.
- W2160277013 hasConceptScore W2160277013C188082640 @default.
- W2160277013 hasConceptScore W2160277013C198531522 @default.
- W2160277013 hasConceptScore W2160277013C199360897 @default.
- W2160277013 hasConceptScore W2160277013C26713055 @default.
- W2160277013 hasConceptScore W2160277013C2776214188 @default.
- W2160277013 hasConceptScore W2160277013C33643355 @default.