Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160286598> ?p ?o ?g. }
- W2160286598 abstract "Using a time-dependent numerical model that spans the chromosphere, corona and solar wind, abundance variations resulting from gravitational settling in the chromosphere and corona have been studied. Gravitational settling in the chromosphere may lead to a depletion in the abundances of minor elements in the solar wind relative to the photosphere. The observed overabundance (relative to the photosphere) of elements with a first ionization potential (FIP) lower than 10 eV in the solar wind, and the underabundance of high-FIP elements such as He and Ne is a long standing problem in solar physics. In Paper I and Paper II, we study the significance of the magnetic flux tube expansion factor on the abundances of high-FIP elements He, Ne and O in the solar wind. With a low expansion factor, of order 15-20, we can reproduce the observed fast solar wind He abundance, but a high expansion factor, of order 40-100, is required to reproduce the observed fast solar wind Ne abundance. In the corona, gravitational settling leads to local abundance enhancements. The magnitude and location of a coronal abundance enhancement depends on the minor element heating rate and the background plasma parameters. Observations of minor element abundances in the corona, in combination with modelling, may place constraints on the minor element heating rates, thereby providing new constraints for models and theories on coronal heating. In Paper I it is shown that, for proton-electron plasma parameters in accordance with observations from polar coronal holes, a coronal He abundance enhancement will occur in the region 1.2 2 R , where no observations of the He abundance exist. It can only be avoided by strong heating of the He ions, which leads to very high outflow velocities for both He and protons in the corona. In Paper II we show that such high outflow velocities in the corona causes O and Ne to be pushed far out of ionization equilibrium, and leads to ion fractions for O and Ne that are not in accordance with in-situ observations in the fast solar wind. The results from Paper I and Paper II suggest that He abundance enhancements are common in the region above 1.2 R . In Paper II we also investigate minor element abundance enhancements in the corona in a H-He background, using O as an example. We find that for O temperatures and outflow velocities in accordance with observations from coronal holes, coronal O abundance enhancements will occur at heights above 1.3 R . In Paper III we study Fe elemental abundance enhancements in the slow solar wind. The results are compared to the observations of Habbal et al. (2007), who found evidence of coronal density enhancements of Fe and Fe, particularly along streamer edges. We show that the observations of Habbal et al. (2007) are consistent with an Fe elemental abundance enhancement, but owing to existing uncertainties about the plasma conditions in the source regions of the slow solar wind we cannot place any strong constraints on the coronal Fe heating rate. However, by comparing the modeled Fe ion fractions with in-situ observations in the slow solar wind we find that a background model with coronal hole-like densities and a high outflow velocity in the corona provides the best fit to observations." @default.
- W2160286598 created "2016-06-24" @default.
- W2160286598 creator A5046994272 @default.
- W2160286598 date "2011-10-21" @default.
- W2160286598 modified "2023-09-24" @default.
- W2160286598 title "Minor element abundances in the corona and solar wind" @default.
- W2160286598 cites W1537881758 @default.
- W2160286598 cites W1539748550 @default.
- W2160286598 cites W1548583761 @default.
- W2160286598 cites W1603327476 @default.
- W2160286598 cites W1649244882 @default.
- W2160286598 cites W1649468314 @default.
- W2160286598 cites W1675609177 @default.
- W2160286598 cites W1721618165 @default.
- W2160286598 cites W1966357818 @default.
- W2160286598 cites W1969345780 @default.
- W2160286598 cites W1976280594 @default.
- W2160286598 cites W1976292617 @default.
- W2160286598 cites W1989722485 @default.
- W2160286598 cites W1995142252 @default.
- W2160286598 cites W1995377335 @default.
- W2160286598 cites W1996349047 @default.
- W2160286598 cites W1997735531 @default.
- W2160286598 cites W1999137746 @default.
- W2160286598 cites W2008211342 @default.
- W2160286598 cites W2010505286 @default.
- W2160286598 cites W2011408778 @default.
- W2160286598 cites W2012070258 @default.
- W2160286598 cites W2014443694 @default.
- W2160286598 cites W2028210758 @default.
- W2160286598 cites W2029612404 @default.
- W2160286598 cites W2030421480 @default.
- W2160286598 cites W2037184439 @default.
- W2160286598 cites W2043843182 @default.
- W2160286598 cites W2044090520 @default.
- W2160286598 cites W2047761465 @default.
- W2160286598 cites W2049214601 @default.
- W2160286598 cites W2052071153 @default.
- W2160286598 cites W2053043861 @default.
- W2160286598 cites W2053274638 @default.
- W2160286598 cites W2075147663 @default.
- W2160286598 cites W2081109603 @default.
- W2160286598 cites W2082012534 @default.
- W2160286598 cites W2082179008 @default.
- W2160286598 cites W2124470574 @default.
- W2160286598 cites W2132022316 @default.
- W2160286598 cites W2142399879 @default.
- W2160286598 cites W2143139636 @default.
- W2160286598 cites W2156456539 @default.
- W2160286598 cites W2160248341 @default.
- W2160286598 cites W2899497983 @default.
- W2160286598 cites W3009979257 @default.
- W2160286598 cites W3017633038 @default.
- W2160286598 cites W3036489897 @default.
- W2160286598 hasPublicationYear "2011" @default.
- W2160286598 type Work @default.
- W2160286598 sameAs 2160286598 @default.
- W2160286598 citedByCount "0" @default.
- W2160286598 crossrefType "dissertation" @default.
- W2160286598 hasAuthorship W2160286598A5046994272 @default.
- W2160286598 hasConcept C106933524 @default.
- W2160286598 hasConcept C108411613 @default.
- W2160286598 hasConcept C108884401 @default.
- W2160286598 hasConcept C116817978 @default.
- W2160286598 hasConcept C118267159 @default.
- W2160286598 hasConcept C121332964 @default.
- W2160286598 hasConcept C1276947 @default.
- W2160286598 hasConcept C146138569 @default.
- W2160286598 hasConcept C150846664 @default.
- W2160286598 hasConcept C172600038 @default.
- W2160286598 hasConcept C2776779350 @default.
- W2160286598 hasConcept C2779900269 @default.
- W2160286598 hasConcept C44870925 @default.
- W2160286598 hasConcept C4839761 @default.
- W2160286598 hasConcept C62520636 @default.
- W2160286598 hasConcept C64162976 @default.
- W2160286598 hasConcept C68944897 @default.
- W2160286598 hasConcept C72886185 @default.
- W2160286598 hasConcept C82706917 @default.
- W2160286598 hasConcept C87355193 @default.
- W2160286598 hasConcept C91586092 @default.
- W2160286598 hasConceptScore W2160286598C106933524 @default.
- W2160286598 hasConceptScore W2160286598C108411613 @default.
- W2160286598 hasConceptScore W2160286598C108884401 @default.
- W2160286598 hasConceptScore W2160286598C116817978 @default.
- W2160286598 hasConceptScore W2160286598C118267159 @default.
- W2160286598 hasConceptScore W2160286598C121332964 @default.
- W2160286598 hasConceptScore W2160286598C1276947 @default.
- W2160286598 hasConceptScore W2160286598C146138569 @default.
- W2160286598 hasConceptScore W2160286598C150846664 @default.
- W2160286598 hasConceptScore W2160286598C172600038 @default.
- W2160286598 hasConceptScore W2160286598C2776779350 @default.
- W2160286598 hasConceptScore W2160286598C2779900269 @default.
- W2160286598 hasConceptScore W2160286598C44870925 @default.
- W2160286598 hasConceptScore W2160286598C4839761 @default.
- W2160286598 hasConceptScore W2160286598C62520636 @default.
- W2160286598 hasConceptScore W2160286598C64162976 @default.
- W2160286598 hasConceptScore W2160286598C68944897 @default.
- W2160286598 hasConceptScore W2160286598C72886185 @default.
- W2160286598 hasConceptScore W2160286598C82706917 @default.