Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160335099> ?p ?o ?g. }
- W2160335099 endingPage "67" @default.
- W2160335099 startingPage "59" @default.
- W2160335099 abstract "Support vector machine (SVM) is one of the widely used machine learning algorithms because of its salient features such as margin maximization and kernel substitution for classification and regression of data in a high dimensional feature space. But SVMs still face difficulties in handling large datasets. This difficulty is because of solving quadratic programming problems in SVMs which is costly, especially when dealing with large sets of training data. The proposed algorithm extracts data points lying close to the cluster boundaries of large data set, which form a much reduced but critical set for classification and regression. Inspired by the difficulties associated with SVM while handling large data sets with nonlinear kernels, the presented algorithm preselects a subset of data points and solves a smaller optimization problem to obtain the support vectors. The method presented reduces the data vectors by a recursive and segmented data structure analysis on the data vectors used to train the SVM. As this method is independent of SVM and precedes the training stage of SVM, it reduces the problem suffered by most data reduction methods that choose data based on repeated training of SVMs. Experiments using line spectral frequency (LSF) data vectors for voice conversion application show that the presented algorithm is capable of reducing the number of data vectors as well as the training time of SVMs, while maintaining good accuracy in terms of objective evaluation. The subjective evaluation result of the proposed voice conversion system is compared with the state of the art method like neural networks (NNs). The results show that the proposed method may be used as an alternative to the existing method for voice conversion. Key words: Support vector machine, clustering based support vector machine, Mahalanobis distance, ward’s linkage" @default.
- W2160335099 created "2016-06-24" @default.
- W2160335099 creator A5000303933 @default.
- W2160335099 creator A5001163027 @default.
- W2160335099 creator A5034744347 @default.
- W2160335099 creator A5047656050 @default.
- W2160335099 date "2011-04-30" @default.
- W2160335099 modified "2023-09-23" @default.
- W2160335099 title "Sample reduction using recursive and segmented data structure analysis" @default.
- W2160335099 cites W1486089539 @default.
- W2160335099 cites W1512098439 @default.
- W2160335099 cites W1514940655 @default.
- W2160335099 cites W1547849677 @default.
- W2160335099 cites W1576520375 @default.
- W2160335099 cites W1604938182 @default.
- W2160335099 cites W1621799579 @default.
- W2160335099 cites W1869391892 @default.
- W2160335099 cites W2009708400 @default.
- W2160335099 cites W2011916518 @default.
- W2160335099 cites W2067234399 @default.
- W2160335099 cites W2095822020 @default.
- W2160335099 cites W2097334502 @default.
- W2160335099 cites W2098515641 @default.
- W2160335099 cites W2118850452 @default.
- W2160335099 cites W2123003832 @default.
- W2160335099 cites W2124547550 @default.
- W2160335099 cites W2124776405 @default.
- W2160335099 cites W2126143605 @default.
- W2160335099 cites W2134900903 @default.
- W2160335099 cites W2139212933 @default.
- W2160335099 cites W2141915722 @default.
- W2160335099 cites W2148603752 @default.
- W2160335099 cites W2156142001 @default.
- W2160335099 cites W2157412983 @default.
- W2160335099 cites W2172000360 @default.
- W2160335099 cites W2426031434 @default.
- W2160335099 cites W3011453289 @default.
- W2160335099 cites W1538577580 @default.
- W2160335099 cites W3031363333 @default.
- W2160335099 doi "https://doi.org/10.5897/jeci.9000011" @default.
- W2160335099 hasPublicationYear "2011" @default.
- W2160335099 type Work @default.
- W2160335099 sameAs 2160335099 @default.
- W2160335099 citedByCount "1" @default.
- W2160335099 countsByYear W21603350992013 @default.
- W2160335099 crossrefType "journal-article" @default.
- W2160335099 hasAuthorship W2160335099A5000303933 @default.
- W2160335099 hasAuthorship W2160335099A5001163027 @default.
- W2160335099 hasAuthorship W2160335099A5034744347 @default.
- W2160335099 hasAuthorship W2160335099A5047656050 @default.
- W2160335099 hasConcept C111335779 @default.
- W2160335099 hasConcept C114614502 @default.
- W2160335099 hasConcept C119857082 @default.
- W2160335099 hasConcept C122280245 @default.
- W2160335099 hasConcept C12267149 @default.
- W2160335099 hasConcept C125168437 @default.
- W2160335099 hasConcept C126255220 @default.
- W2160335099 hasConcept C153180895 @default.
- W2160335099 hasConcept C154945302 @default.
- W2160335099 hasConcept C21080849 @default.
- W2160335099 hasConcept C2524010 @default.
- W2160335099 hasConcept C33923547 @default.
- W2160335099 hasConcept C41008148 @default.
- W2160335099 hasConcept C50644808 @default.
- W2160335099 hasConcept C58489278 @default.
- W2160335099 hasConcept C74193536 @default.
- W2160335099 hasConcept C774472 @default.
- W2160335099 hasConcept C81845259 @default.
- W2160335099 hasConcept C83665646 @default.
- W2160335099 hasConceptScore W2160335099C111335779 @default.
- W2160335099 hasConceptScore W2160335099C114614502 @default.
- W2160335099 hasConceptScore W2160335099C119857082 @default.
- W2160335099 hasConceptScore W2160335099C122280245 @default.
- W2160335099 hasConceptScore W2160335099C12267149 @default.
- W2160335099 hasConceptScore W2160335099C125168437 @default.
- W2160335099 hasConceptScore W2160335099C126255220 @default.
- W2160335099 hasConceptScore W2160335099C153180895 @default.
- W2160335099 hasConceptScore W2160335099C154945302 @default.
- W2160335099 hasConceptScore W2160335099C21080849 @default.
- W2160335099 hasConceptScore W2160335099C2524010 @default.
- W2160335099 hasConceptScore W2160335099C33923547 @default.
- W2160335099 hasConceptScore W2160335099C41008148 @default.
- W2160335099 hasConceptScore W2160335099C50644808 @default.
- W2160335099 hasConceptScore W2160335099C58489278 @default.
- W2160335099 hasConceptScore W2160335099C74193536 @default.
- W2160335099 hasConceptScore W2160335099C774472 @default.
- W2160335099 hasConceptScore W2160335099C81845259 @default.
- W2160335099 hasConceptScore W2160335099C83665646 @default.
- W2160335099 hasIssue "4" @default.
- W2160335099 hasLocation W21603350991 @default.
- W2160335099 hasOpenAccess W2160335099 @default.
- W2160335099 hasPrimaryLocation W21603350991 @default.
- W2160335099 hasRelatedWork W1556122387 @default.
- W2160335099 hasRelatedWork W1884732276 @default.
- W2160335099 hasRelatedWork W1889103747 @default.
- W2160335099 hasRelatedWork W2009708400 @default.
- W2160335099 hasRelatedWork W204662761 @default.
- W2160335099 hasRelatedWork W2047300736 @default.