Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160353123> ?p ?o ?g. }
- W2160353123 endingPage "289" @default.
- W2160353123 startingPage "281" @default.
- W2160353123 abstract "•Hyperthermophilic (HT) enzymes expressed in planta show low in vitro toxicity. •In planta expression of HT enzymes is an elegant approach to pre-digestion of plant biomass. •The steam explosion profile can be adjusted to optimize enzyme activity. Plant biomass, as an abundant renewable carbon source, is a promising alternative to fossil fuels. However, the enzymes most commonly used for depolymerization of lignocellulosic biomass are expensive, and the development of cost-effective alternative conversion technologies would be desirable. One possible option is the heterologous expression of genes encoding lignocellulose-digesting enzymes in plant tissues. To overcome simultaneously issues of toxicity and incompatibility with high-temperature steam explosion processes, the use of heterologous genes encoding hyperthermophilic enzymes may be an attractive alternative. This approach could reduce the need for exogenous enzyme additions prior to fermentation, reducing the cost of the complete processing operation. This review highlights recent advances and future prospects for using hyperthermophilic enzymes in the biofuels industry. Plant biomass, as an abundant renewable carbon source, is a promising alternative to fossil fuels. However, the enzymes most commonly used for depolymerization of lignocellulosic biomass are expensive, and the development of cost-effective alternative conversion technologies would be desirable. One possible option is the heterologous expression of genes encoding lignocellulose-digesting enzymes in plant tissues. To overcome simultaneously issues of toxicity and incompatibility with high-temperature steam explosion processes, the use of heterologous genes encoding hyperthermophilic enzymes may be an attractive alternative. This approach could reduce the need for exogenous enzyme additions prior to fermentation, reducing the cost of the complete processing operation. This review highlights recent advances and future prospects for using hyperthermophilic enzymes in the biofuels industry. biomass is biological material derived from living or recently living organisms. In the context of biomass for energy this term more often refers to plant-based material, but biomass can equally apply to both animal- and vegetable-derived material. removal of as much CO2 from the atmosphere by a particular activity as it emits into it. Lignocellulosic biomass is the most abundant carbon neutral compound. an algorithm that best approximates codon usage frequencies from the native host and adjusts these for use in the heterologous system in order to improve the heterologous protein expression. systematic alteration of codons in recombinant DNA to be expressed in a heterologous system to match the pattern of codon usage in the organism used for expression without changing the amino acids of the synthesized protein. The intention is to enhance yields of the expressed protein by increasing the translational efficiency of gene of interest. CBP of lignocellulose to bioethanol refers to the combination of two or more of the four processes required for the conversion (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential alternative to the use of sequential, independent unit operations. first-generation biofuels are those directly derived from biomass that is generally edible (produced primarily from food crops such as grains, sugar beet, and oil seeds), and which contains readily hydrolysable sugar polymers (starch from maize) or directly fermentable sugars (sucrose from sugar beet). lignocellulose is a generic term for describing the main constituents in most plants, namely cellulose, hemicelluloses, and lignin. Lignocellulose is a complex matrix, comprising many different polysaccharides, phenolic polymers, and proteins. Cellulose, the major component of cell walls of land plants, is a glucan polysaccharide. mesophilic enzymes are defined as those isolated and/or cloned from mesophilic microorganisms (i.e., organisms growing optimally between 20 and 37°C, and maximally at below 50°C). second-generation biofuels are defined as fuels produced from a wide array of different feedstocks that are primarily composed of lignocellulosic materials. The lignocellulosic biomass may include materials such as agricultural residues (corn stover, crop straws, and bagasse), herbaceous crops (alfalfa and switch grass), short rotation woody crops, forestry residues, and waste paper and other wastes (municipal and industrial). enzymes, from whatever source, which show a higher degree of thermostability than homologous mesophilic enzymes. transit peptides are responsible for the transport of a protein encoded by a nuclear gene to a particular organelle. The commonly used transit (signal) peptides include tobacco pathogenesis related protein 1a (Pr1a), Soybean variant-specific protein (VSPβ), Rubisco activase (RA), light harvesting chlorophyll alb-binding protein (CAB), Rubisco small subunit (RS), KDEL, LPH, tobacco calreticulin signal peptide (CAL), as shown in Table S1 in the supplementary material online." @default.
- W2160353123 created "2016-06-24" @default.
- W2160353123 creator A5014618693 @default.
- W2160353123 creator A5016890465 @default.
- W2160353123 creator A5022000210 @default.
- W2160353123 creator A5059577229 @default.
- W2160353123 creator A5081821121 @default.
- W2160353123 date "2014-05-01" @default.
- W2160353123 modified "2023-10-07" @default.
- W2160353123 title "Recombinant hyperthermophilic enzyme expression in plants: a novel approach for lignocellulose digestion" @default.
- W2160353123 cites W1221709268 @default.
- W2160353123 cites W1520552221 @default.
- W2160353123 cites W1582181324 @default.
- W2160353123 cites W1596306589 @default.
- W2160353123 cites W1682922962 @default.
- W2160353123 cites W1827701653 @default.
- W2160353123 cites W1963963601 @default.
- W2160353123 cites W1966709427 @default.
- W2160353123 cites W1972545964 @default.
- W2160353123 cites W1973847494 @default.
- W2160353123 cites W1974455070 @default.
- W2160353123 cites W1975196099 @default.
- W2160353123 cites W1975481433 @default.
- W2160353123 cites W1982204602 @default.
- W2160353123 cites W1983553894 @default.
- W2160353123 cites W1985609751 @default.
- W2160353123 cites W1987576588 @default.
- W2160353123 cites W1987984230 @default.
- W2160353123 cites W1995253178 @default.
- W2160353123 cites W1999228311 @default.
- W2160353123 cites W1999676950 @default.
- W2160353123 cites W2005291574 @default.
- W2160353123 cites W2008098614 @default.
- W2160353123 cites W2010845216 @default.
- W2160353123 cites W2026384164 @default.
- W2160353123 cites W2027160473 @default.
- W2160353123 cites W2028557999 @default.
- W2160353123 cites W2030861208 @default.
- W2160353123 cites W2032878540 @default.
- W2160353123 cites W2035632664 @default.
- W2160353123 cites W2036532753 @default.
- W2160353123 cites W2038153745 @default.
- W2160353123 cites W2039034666 @default.
- W2160353123 cites W2051323381 @default.
- W2160353123 cites W2058698236 @default.
- W2160353123 cites W2058867396 @default.
- W2160353123 cites W2061647355 @default.
- W2160353123 cites W2063787259 @default.
- W2160353123 cites W2065592668 @default.
- W2160353123 cites W2079993994 @default.
- W2160353123 cites W2080390097 @default.
- W2160353123 cites W2082455524 @default.
- W2160353123 cites W2086187764 @default.
- W2160353123 cites W2087880737 @default.
- W2160353123 cites W2092644402 @default.
- W2160353123 cites W2101098790 @default.
- W2160353123 cites W2102532031 @default.
- W2160353123 cites W2105503244 @default.
- W2160353123 cites W2109164508 @default.
- W2160353123 cites W2109389478 @default.
- W2160353123 cites W2111225889 @default.
- W2160353123 cites W2113931931 @default.
- W2160353123 cites W2115757210 @default.
- W2160353123 cites W2116711233 @default.
- W2160353123 cites W2116918487 @default.
- W2160353123 cites W2120244994 @default.
- W2160353123 cites W2120706216 @default.
- W2160353123 cites W2121108655 @default.
- W2160353123 cites W2122828981 @default.
- W2160353123 cites W2123489066 @default.
- W2160353123 cites W2124280483 @default.
- W2160353123 cites W2125883364 @default.
- W2160353123 cites W2131156642 @default.
- W2160353123 cites W2133569699 @default.
- W2160353123 cites W2135304285 @default.
- W2160353123 cites W2139564488 @default.
- W2160353123 cites W2140780215 @default.
- W2160353123 cites W2142297287 @default.
- W2160353123 cites W2144335345 @default.
- W2160353123 cites W2148693790 @default.
- W2160353123 cites W2151557512 @default.
- W2160353123 cites W2158958137 @default.
- W2160353123 cites W2160123812 @default.
- W2160353123 cites W2164761813 @default.
- W2160353123 cites W4234308538 @default.
- W2160353123 cites W4248049627 @default.
- W2160353123 cites W4256399090 @default.
- W2160353123 doi "https://doi.org/10.1016/j.tibtech.2014.03.003" @default.
- W2160353123 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24732021" @default.
- W2160353123 hasPublicationYear "2014" @default.
- W2160353123 type Work @default.
- W2160353123 sameAs 2160353123 @default.
- W2160353123 citedByCount "21" @default.
- W2160353123 countsByYear W21603531232015 @default.
- W2160353123 countsByYear W21603531232016 @default.
- W2160353123 countsByYear W21603531232017 @default.
- W2160353123 countsByYear W21603531232018 @default.
- W2160353123 countsByYear W21603531232019 @default.