Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160604967> ?p ?o ?g. }
- W2160604967 endingPage "331" @default.
- W2160604967 startingPage "299" @default.
- W2160604967 abstract "Constructing an accurate effort prediction model is a challenge in software engineering. The development and validation of models that are used for prediction tasks require good quality data. Unfortunately, software engineering datasets tend to suffer from the incompleteness which could result to inaccurate decision making and project management and implementation. Recently, the use of machine learning algorithms has proven to be of great practical value in solving a variety of software engineering problems including software prediction, including the use of ensemble (combining) classifiers. Research indicates that ensemble individual classifiers lead to a significant improvement in classification performance by having them vote for the most popular class. This paper proposes a method for improving software effort prediction accuracy produced by a decision tree learning algorithm and by generating the ensemble using two imputation methods as elements. Benchmarking results on ten industrial datasets show that the proposed ensemble strategy has the potential to improve prediction accuracy compared to an individual imputation method, especially if multiple imputation is a component of the ensemble." @default.
- W2160604967 created "2016-06-24" @default.
- W2160604967 creator A5062642521 @default.
- W2160604967 creator A5073968263 @default.
- W2160604967 date "2010-05-13" @default.
- W2160604967 modified "2023-09-23" @default.
- W2160604967 title "Ensemble missing data techniques for software effort prediction" @default.
- W2160604967 cites W145260474 @default.
- W2160604967 cites W1493193319 @default.
- W2160604967 cites W1498291970 @default.
- W2160604967 cites W1504694836 @default.
- W2160604967 cites W1510022125 @default.
- W2160604967 cites W1524780546 @default.
- W2160604967 cites W1534477342 @default.
- W2160604967 cites W1539097253 @default.
- W2160604967 cites W1542897869 @default.
- W2160604967 cites W1550443206 @default.
- W2160604967 cites W1559996711 @default.
- W2160604967 cites W1576290412 @default.
- W2160604967 cites W1594031697 @default.
- W2160604967 cites W1598553907 @default.
- W2160604967 cites W1602699467 @default.
- W2160604967 cites W1605688901 @default.
- W2160604967 cites W1606533552 @default.
- W2160604967 cites W161653996 @default.
- W2160604967 cites W1666151602 @default.
- W2160604967 cites W1678889691 @default.
- W2160604967 cites W177590838 @default.
- W2160604967 cites W1930624869 @default.
- W2160604967 cites W19427811 @default.
- W2160604967 cites W1975372980 @default.
- W2160604967 cites W2011773465 @default.
- W2160604967 cites W2017861428 @default.
- W2160604967 cites W2031668066 @default.
- W2160604967 cites W2039081830 @default.
- W2160604967 cites W2044758663 @default.
- W2160604967 cites W2058128280 @default.
- W2160604967 cites W2062658698 @default.
- W2160604967 cites W2065709315 @default.
- W2160604967 cites W2068194199 @default.
- W2160604967 cites W2071767222 @default.
- W2160604967 cites W2071817951 @default.
- W2160604967 cites W2075755635 @default.
- W2160604967 cites W2078675530 @default.
- W2160604967 cites W2095778055 @default.
- W2160604967 cites W2098168647 @default.
- W2160604967 cites W2101728371 @default.
- W2160604967 cites W2101796008 @default.
- W2160604967 cites W2112076978 @default.
- W2160604967 cites W2114077012 @default.
- W2160604967 cites W2125055259 @default.
- W2160604967 cites W2125283600 @default.
- W2160604967 cites W2126199450 @default.
- W2160604967 cites W2127519619 @default.
- W2160604967 cites W2131378644 @default.
- W2160604967 cites W2133442842 @default.
- W2160604967 cites W2136691316 @default.
- W2160604967 cites W2143189463 @default.
- W2160604967 cites W2148694408 @default.
- W2160604967 cites W2149706766 @default.
- W2160604967 cites W2152761983 @default.
- W2160604967 cites W2156267802 @default.
- W2160604967 cites W2157092487 @default.
- W2160604967 cites W2157542847 @default.
- W2160604967 cites W2157779650 @default.
- W2160604967 cites W2172074277 @default.
- W2160604967 cites W2328425223 @default.
- W2160604967 cites W2912934387 @default.
- W2160604967 cites W2912937828 @default.
- W2160604967 cites W2939002775 @default.
- W2160604967 cites W3085162807 @default.
- W2160604967 cites W3129711340 @default.
- W2160604967 cites W203932818 @default.
- W2160604967 cites W26277909 @default.
- W2160604967 doi "https://doi.org/10.3233/ida-2010-0423" @default.
- W2160604967 hasPublicationYear "2010" @default.
- W2160604967 type Work @default.
- W2160604967 sameAs 2160604967 @default.
- W2160604967 citedByCount "32" @default.
- W2160604967 countsByYear W21606049672013 @default.
- W2160604967 countsByYear W21606049672014 @default.
- W2160604967 countsByYear W21606049672015 @default.
- W2160604967 countsByYear W21606049672016 @default.
- W2160604967 countsByYear W21606049672017 @default.
- W2160604967 countsByYear W21606049672018 @default.
- W2160604967 countsByYear W21606049672019 @default.
- W2160604967 countsByYear W21606049672020 @default.
- W2160604967 countsByYear W21606049672021 @default.
- W2160604967 countsByYear W21606049672022 @default.
- W2160604967 countsByYear W21606049672023 @default.
- W2160604967 crossrefType "journal-article" @default.
- W2160604967 hasAuthorship W2160604967A5062642521 @default.
- W2160604967 hasAuthorship W2160604967A5073968263 @default.
- W2160604967 hasConcept C119857082 @default.
- W2160604967 hasConcept C124101348 @default.
- W2160604967 hasConcept C199360897 @default.
- W2160604967 hasConcept C2522767166 @default.
- W2160604967 hasConcept C2777904410 @default.