Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160771609> ?p ?o ?g. }
- W2160771609 endingPage "606" @default.
- W2160771609 startingPage "598" @default.
- W2160771609 abstract "Wrist pulse signal is of great importance in the analysis of the health status and pathologic changes of a person. A number of feature extraction methods have been proposed to extract linear and nonlinear, and time and frequency features of wrist pulse signal. These features are heterogeneous in nature and are likely to contain complementary information, which highlights the need for the integration of heterogeneous features for pulse classification and diagnosis. In this paper, we propose a novel effective method to classify the wrist pulse blood flow signals by using the multiple kernel learning (MKL) algorithm to combine multiple types of features. In the proposed method, seven types of features are first extracted from the wrist pulse blood flow signals using the state-of-the-art pulse feature extraction methods, and are then fed to an efficient MKL method, SimpleMKL, to combine heterogeneous features for more effective classification. Experimental results show that the proposed method is promising in integrating multiple types of pulse features to further enhance the classification performance." @default.
- W2160771609 created "2016-06-24" @default.
- W2160771609 creator A5018318136 @default.
- W2160771609 creator A5026448202 @default.
- W2160771609 creator A5079925095 @default.
- W2160771609 creator A5086950126 @default.
- W2160771609 creator A5089831302 @default.
- W2160771609 date "2012-07-01" @default.
- W2160771609 modified "2023-10-16" @default.
- W2160771609 title "Combination of Heterogeneous Features for Wrist Pulse Blood Flow Signal Diagnosis via Multiple Kernel Learning" @default.
- W2160771609 cites W1499604918 @default.
- W2160771609 cites W1510073064 @default.
- W2160771609 cites W1975742418 @default.
- W2160771609 cites W1979998635 @default.
- W2160771609 cites W1984495457 @default.
- W2160771609 cites W1984949750 @default.
- W2160771609 cites W1994076864 @default.
- W2160771609 cites W2007221293 @default.
- W2160771609 cites W2020571458 @default.
- W2160771609 cites W2031823405 @default.
- W2160771609 cites W2076841418 @default.
- W2160771609 cites W2077204677 @default.
- W2160771609 cites W2080830616 @default.
- W2160771609 cites W2082479672 @default.
- W2160771609 cites W2084413241 @default.
- W2160771609 cites W2089737752 @default.
- W2160771609 cites W2096772233 @default.
- W2160771609 cites W2097126443 @default.
- W2160771609 cites W2106923614 @default.
- W2160771609 cites W2118209906 @default.
- W2160771609 cites W2136777522 @default.
- W2160771609 cites W2137825339 @default.
- W2160771609 cites W2138516811 @default.
- W2160771609 cites W2139212933 @default.
- W2160771609 cites W2139781097 @default.
- W2160771609 cites W2143139839 @default.
- W2160771609 cites W2143325592 @default.
- W2160771609 cites W2161444669 @default.
- W2160771609 doi "https://doi.org/10.1109/titb.2012.2195188" @default.
- W2160771609 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22711776" @default.
- W2160771609 hasPublicationYear "2012" @default.
- W2160771609 type Work @default.
- W2160771609 sameAs 2160771609 @default.
- W2160771609 citedByCount "42" @default.
- W2160771609 countsByYear W21607716092012 @default.
- W2160771609 countsByYear W21607716092013 @default.
- W2160771609 countsByYear W21607716092014 @default.
- W2160771609 countsByYear W21607716092015 @default.
- W2160771609 countsByYear W21607716092016 @default.
- W2160771609 countsByYear W21607716092017 @default.
- W2160771609 countsByYear W21607716092018 @default.
- W2160771609 countsByYear W21607716092019 @default.
- W2160771609 countsByYear W21607716092020 @default.
- W2160771609 countsByYear W21607716092021 @default.
- W2160771609 countsByYear W21607716092022 @default.
- W2160771609 countsByYear W21607716092023 @default.
- W2160771609 crossrefType "journal-article" @default.
- W2160771609 hasAuthorship W2160771609A5018318136 @default.
- W2160771609 hasAuthorship W2160771609A5026448202 @default.
- W2160771609 hasAuthorship W2160771609A5079925095 @default.
- W2160771609 hasAuthorship W2160771609A5086950126 @default.
- W2160771609 hasAuthorship W2160771609A5089831302 @default.
- W2160771609 hasConcept C106131492 @default.
- W2160771609 hasConcept C114614502 @default.
- W2160771609 hasConcept C122280245 @default.
- W2160771609 hasConcept C12267149 @default.
- W2160771609 hasConcept C126838900 @default.
- W2160771609 hasConcept C138885662 @default.
- W2160771609 hasConcept C142433447 @default.
- W2160771609 hasConcept C153180895 @default.
- W2160771609 hasConcept C154945302 @default.
- W2160771609 hasConcept C199360897 @default.
- W2160771609 hasConcept C2524010 @default.
- W2160771609 hasConcept C2776401178 @default.
- W2160771609 hasConcept C2776879701 @default.
- W2160771609 hasConcept C2778216619 @default.
- W2160771609 hasConcept C2779843651 @default.
- W2160771609 hasConcept C2780167933 @default.
- W2160771609 hasConcept C31972630 @default.
- W2160771609 hasConcept C33923547 @default.
- W2160771609 hasConcept C38349280 @default.
- W2160771609 hasConcept C41008148 @default.
- W2160771609 hasConcept C41895202 @default.
- W2160771609 hasConcept C52622490 @default.
- W2160771609 hasConcept C71924100 @default.
- W2160771609 hasConcept C74193536 @default.
- W2160771609 hasConcept C76155785 @default.
- W2160771609 hasConcept C94915269 @default.
- W2160771609 hasConceptScore W2160771609C106131492 @default.
- W2160771609 hasConceptScore W2160771609C114614502 @default.
- W2160771609 hasConceptScore W2160771609C122280245 @default.
- W2160771609 hasConceptScore W2160771609C12267149 @default.
- W2160771609 hasConceptScore W2160771609C126838900 @default.
- W2160771609 hasConceptScore W2160771609C138885662 @default.
- W2160771609 hasConceptScore W2160771609C142433447 @default.
- W2160771609 hasConceptScore W2160771609C153180895 @default.
- W2160771609 hasConceptScore W2160771609C154945302 @default.
- W2160771609 hasConceptScore W2160771609C199360897 @default.