Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160862653> ?p ?o ?g. }
- W2160862653 endingPage "7283" @default.
- W2160862653 startingPage "7267" @default.
- W2160862653 abstract "Abstract. Aerosol microphysics, chemical composition, and CCN concentrations were measured at the T0 urban supersite in Mexico City during Megacity Initiative: Local and Global Research Observations (MILAGRO) in March 2006. The aerosol size distribution and composition often showed strong diurnal variation associated with traffic emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. CCN concentrations (NCCN) are derived using Köhler theory from the measured aerosol size distribution and various simplified aerosol mixing state and chemical composition, and are compared to concurrent measurements at five supersaturations ranging from 0.11% to 0.35%. The influence of assumed mixing state on calculated NCCN is examined using both aerosols observed during MILAGRO and representative aerosol types. The results indicate that while ambient aerosols often consist of particles with a wide range of compositions at a given size, NCCN may be derived within ~20% assuming an internal mixture (i.e., particles at a given size are mixtures of all participating species, and have the identical composition) if great majority of particles has an overall κ (hygroscopicity parameter) value greater than 0.1. For a non-hygroscopic particle with a diameter of 100 nm, a 3 nm coating of sulfate or nitrate is sufficient to increase its κ from 0 to 0.1. The measurements during MILAGRO suggest that the mixing of non-hygroscopic primary organic aerosol (POA) and black carbon (BC) particles with photochemically produced hygroscopic species and thereby the increase of their κ to 0.1 take place in a few hours during daytime. This rapid process suggests that during daytime, a few tens of kilometers away for POA and BC sources, NCCN may be derived with sufficient accuracy by assuming an internal mixture, and using bulk chemical composition. The rapid mixing also indicates that, at least for very active photochemical environments such as Mexico City, the timescale during daytime for the conversion of hydrophobic POA and BC to hydrophilic particles is substantially shorter than the 1–2 days used in some global models. The conversion time scale is substantially longer during night. Most POA and BC particles emitted during evening hours likely remain non-hygroscopic until efficiently internally mixed with secondary species in the next morning. The results also suggest that the assumed mixing state strongly impacts calculated NCCN only when POA and BC represent a large fraction of the total aerosol volume. One of the implications is that while physically unrealistic, external mixtures, which are used in many global models, may also sufficiently predict NCCN for aged aerosol, as the contribution of non-hygroscopic POA and BC to overall aerosol volume is often substantially reduced due to the condensation of secondary species." @default.
- W2160862653 created "2016-06-24" @default.
- W2160862653 creator A5012564009 @default.
- W2160862653 creator A5070787386 @default.
- W2160862653 creator A5074908748 @default.
- W2160862653 creator A5081595136 @default.
- W2160862653 creator A5086269653 @default.
- W2160862653 date "2010-08-06" @default.
- W2160862653 modified "2023-10-17" @default.
- W2160862653 title "The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols" @default.
- W2160862653 cites W1561878391 @default.
- W2160862653 cites W1679483972 @default.
- W2160862653 cites W1949079599 @default.
- W2160862653 cites W1970410072 @default.
- W2160862653 cites W1988963778 @default.
- W2160862653 cites W2004753519 @default.
- W2160862653 cites W2005953962 @default.
- W2160862653 cites W2010625139 @default.
- W2160862653 cites W2012620547 @default.
- W2160862653 cites W2012622483 @default.
- W2160862653 cites W2013498974 @default.
- W2160862653 cites W2013620861 @default.
- W2160862653 cites W2021198116 @default.
- W2160862653 cites W2022549417 @default.
- W2160862653 cites W2031197642 @default.
- W2160862653 cites W2035100346 @default.
- W2160862653 cites W2038851184 @default.
- W2160862653 cites W2039919849 @default.
- W2160862653 cites W2040590436 @default.
- W2160862653 cites W2045575563 @default.
- W2160862653 cites W2047299290 @default.
- W2160862653 cites W2047408477 @default.
- W2160862653 cites W2052859509 @default.
- W2160862653 cites W2053799799 @default.
- W2160862653 cites W2056857971 @default.
- W2160862653 cites W2058354725 @default.
- W2160862653 cites W2059756703 @default.
- W2160862653 cites W2064433844 @default.
- W2160862653 cites W2064475666 @default.
- W2160862653 cites W2064785463 @default.
- W2160862653 cites W2064943738 @default.
- W2160862653 cites W2065967407 @default.
- W2160862653 cites W2072464080 @default.
- W2160862653 cites W2073115945 @default.
- W2160862653 cites W2076112917 @default.
- W2160862653 cites W2080955504 @default.
- W2160862653 cites W2081118881 @default.
- W2160862653 cites W2095645192 @default.
- W2160862653 cites W2099636727 @default.
- W2160862653 cites W2101623331 @default.
- W2160862653 cites W2103174687 @default.
- W2160862653 cites W2104647933 @default.
- W2160862653 cites W2105205246 @default.
- W2160862653 cites W2105463749 @default.
- W2160862653 cites W2105667384 @default.
- W2160862653 cites W2108642660 @default.
- W2160862653 cites W2112308202 @default.
- W2160862653 cites W2113673259 @default.
- W2160862653 cites W2115601260 @default.
- W2160862653 cites W2116900371 @default.
- W2160862653 cites W2118295252 @default.
- W2160862653 cites W2118652470 @default.
- W2160862653 cites W2121941478 @default.
- W2160862653 cites W2122530338 @default.
- W2160862653 cites W2124554006 @default.
- W2160862653 cites W2127510753 @default.
- W2160862653 cites W2135523449 @default.
- W2160862653 cites W2139364552 @default.
- W2160862653 cites W2139836399 @default.
- W2160862653 cites W2140465081 @default.
- W2160862653 cites W2141240007 @default.
- W2160862653 cites W2142199451 @default.
- W2160862653 cites W2143297655 @default.
- W2160862653 cites W2143539467 @default.
- W2160862653 cites W2144348006 @default.
- W2160862653 cites W2146904478 @default.
- W2160862653 cites W2147053476 @default.
- W2160862653 cites W2148707082 @default.
- W2160862653 cites W2149095269 @default.
- W2160862653 cites W2151368743 @default.
- W2160862653 cites W2151449194 @default.
- W2160862653 cites W2152941447 @default.
- W2160862653 cites W2153916821 @default.
- W2160862653 cites W2154126799 @default.
- W2160862653 cites W2155080239 @default.
- W2160862653 cites W2165729402 @default.
- W2160862653 cites W2165968856 @default.
- W2160862653 cites W2166063496 @default.
- W2160862653 cites W2167088427 @default.
- W2160862653 cites W2168143240 @default.
- W2160862653 cites W2170783614 @default.
- W2160862653 cites W2171508840 @default.
- W2160862653 cites W2173852084 @default.
- W2160862653 cites W2998929434 @default.
- W2160862653 cites W3102231179 @default.
- W2160862653 cites W4238691261 @default.
- W2160862653 doi "https://doi.org/10.5194/acp-10-7267-2010" @default.
- W2160862653 hasPublicationYear "2010" @default.