Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160979370> ?p ?o ?g. }
- W2160979370 endingPage "728" @default.
- W2160979370 startingPage "721" @default.
- W2160979370 abstract "Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences.In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals.A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/." @default.
- W2160979370 created "2016-06-24" @default.
- W2160979370 creator A5026291475 @default.
- W2160979370 creator A5085077889 @default.
- W2160979370 date "2001-08-01" @default.
- W2160979370 modified "2023-10-10" @default.
- W2160979370 title "Support vector machine approach for protein subcellular localization prediction" @default.
- W2160979370 cites W1489703101 @default.
- W2160979370 cites W1491250132 @default.
- W2160979370 cites W1526754730 @default.
- W2160979370 cites W1548139318 @default.
- W2160979370 cites W1576520375 @default.
- W2160979370 cites W1985818354 @default.
- W2160979370 cites W1994704939 @default.
- W2160979370 cites W2020194549 @default.
- W2160979370 cites W2025131366 @default.
- W2160979370 cites W2070547667 @default.
- W2160979370 cites W2082605863 @default.
- W2160979370 cites W2085022192 @default.
- W2160979370 cites W2094560491 @default.
- W2160979370 cites W2097918186 @default.
- W2160979370 cites W2100851422 @default.
- W2160979370 cites W2102794349 @default.
- W2160979370 cites W2110541543 @default.
- W2160979370 cites W2114909890 @default.
- W2160979370 cites W2117919289 @default.
- W2160979370 cites W2119452210 @default.
- W2160979370 cites W2119821739 @default.
- W2160979370 cites W2122945697 @default.
- W2160979370 cites W2124306486 @default.
- W2160979370 cites W2148603752 @default.
- W2160979370 cites W2148622452 @default.
- W2160979370 cites W2152458080 @default.
- W2160979370 cites W2155755608 @default.
- W2160979370 cites W2156909104 @default.
- W2160979370 cites W2158120166 @default.
- W2160979370 cites W2169384781 @default.
- W2160979370 cites W2171091522 @default.
- W2160979370 doi "https://doi.org/10.1093/bioinformatics/17.8.721" @default.
- W2160979370 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11524373" @default.
- W2160979370 hasPublicationYear "2001" @default.
- W2160979370 type Work @default.
- W2160979370 sameAs 2160979370 @default.
- W2160979370 citedByCount "808" @default.
- W2160979370 countsByYear W21609793702012 @default.
- W2160979370 countsByYear W21609793702013 @default.
- W2160979370 countsByYear W21609793702014 @default.
- W2160979370 countsByYear W21609793702015 @default.
- W2160979370 countsByYear W21609793702016 @default.
- W2160979370 countsByYear W21609793702017 @default.
- W2160979370 countsByYear W21609793702018 @default.
- W2160979370 countsByYear W21609793702019 @default.
- W2160979370 countsByYear W21609793702020 @default.
- W2160979370 countsByYear W21609793702021 @default.
- W2160979370 countsByYear W21609793702022 @default.
- W2160979370 countsByYear W21609793702023 @default.
- W2160979370 crossrefType "journal-article" @default.
- W2160979370 hasAuthorship W2160979370A5026291475 @default.
- W2160979370 hasAuthorship W2160979370A5085077889 @default.
- W2160979370 hasBestOaLocation W21609793701 @default.
- W2160979370 hasConcept C104317684 @default.
- W2160979370 hasConcept C10858879 @default.
- W2160979370 hasConcept C111696304 @default.
- W2160979370 hasConcept C11413529 @default.
- W2160979370 hasConcept C12267149 @default.
- W2160979370 hasConcept C124101348 @default.
- W2160979370 hasConcept C140051345 @default.
- W2160979370 hasConcept C144647389 @default.
- W2160979370 hasConcept C154945302 @default.
- W2160979370 hasConcept C167625842 @default.
- W2160979370 hasConcept C2776879804 @default.
- W2160979370 hasConcept C2780362125 @default.
- W2160979370 hasConcept C2908929163 @default.
- W2160979370 hasConcept C41008148 @default.
- W2160979370 hasConcept C41625074 @default.
- W2160979370 hasConcept C55493867 @default.
- W2160979370 hasConcept C559089031 @default.
- W2160979370 hasConcept C70721500 @default.
- W2160979370 hasConcept C86803240 @default.
- W2160979370 hasConceptScore W2160979370C104317684 @default.
- W2160979370 hasConceptScore W2160979370C10858879 @default.
- W2160979370 hasConceptScore W2160979370C111696304 @default.
- W2160979370 hasConceptScore W2160979370C11413529 @default.
- W2160979370 hasConceptScore W2160979370C12267149 @default.
- W2160979370 hasConceptScore W2160979370C124101348 @default.
- W2160979370 hasConceptScore W2160979370C140051345 @default.
- W2160979370 hasConceptScore W2160979370C144647389 @default.
- W2160979370 hasConceptScore W2160979370C154945302 @default.
- W2160979370 hasConceptScore W2160979370C167625842 @default.
- W2160979370 hasConceptScore W2160979370C2776879804 @default.
- W2160979370 hasConceptScore W2160979370C2780362125 @default.
- W2160979370 hasConceptScore W2160979370C2908929163 @default.
- W2160979370 hasConceptScore W2160979370C41008148 @default.
- W2160979370 hasConceptScore W2160979370C41625074 @default.
- W2160979370 hasConceptScore W2160979370C55493867 @default.
- W2160979370 hasConceptScore W2160979370C559089031 @default.
- W2160979370 hasConceptScore W2160979370C70721500 @default.
- W2160979370 hasConceptScore W2160979370C86803240 @default.