Matches in SemOpenAlex for { <https://semopenalex.org/work/W2160997581> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2160997581 endingPage "14" @default.
- W2160997581 startingPage "1" @default.
- W2160997581 abstract "Meta-Learning aims to automatically acquire knowledge relating features of learning problems to the performance of learning algorithms. Each training example in Meta-Learning (i.e. each meta-example) stores features of a learning problem plus the performance obtained by a set of algorithms when evaluated on the problem. Based on a set of meta-examples, a Meta-Learner will be used to predict algorithm performance for new problems. The generation of a good set of meta-examples can be a costly process, since for each problem it is necessary to perform an empirical evaluation of the algorithms. In a previous work, we proposed the Active Meta-Learning, in which Active Learning was used to reduce the set of meta-examples by selecting only the most relevant problems for meta-example generation. In the current work, we extend our previous research by combining different Uncertainty Sampling methods for Active Meta-Learning, considering that each individual method will provide useful information to select relevant problems. We also investigated the use of Outlier Detection to remove a priori those problems considered as outliers, aiming to improve the performance of the sampling methods. In our experiments, we observed a gain in Meta-Learning performance when the proposed combining method was compared to the individual active methods being combined and also when outliers were removed from the set of problems available for meta-example generation." @default.
- W2160997581 created "2016-06-24" @default.
- W2160997581 creator A5025550530 @default.
- W2160997581 creator A5083998049 @default.
- W2160997581 date "2012-08-01" @default.
- W2160997581 modified "2023-09-26" @default.
- W2160997581 title "Combining Uncertainty Sampling methods for supporting the generation of meta-examples" @default.
- W2160997581 cites W1485958089 @default.
- W2160997581 cites W1494580925 @default.
- W2160997581 cites W1530622464 @default.
- W2160997581 cites W1547838056 @default.
- W2160997581 cites W1551928278 @default.
- W2160997581 cites W1564069282 @default.
- W2160997581 cites W1580375566 @default.
- W2160997581 cites W1979412670 @default.
- W2160997581 cites W1985789779 @default.
- W2160997581 cites W1987458475 @default.
- W2160997581 cites W1987605949 @default.
- W2160997581 cites W1989048657 @default.
- W2160997581 cites W1993717606 @default.
- W2160997581 cites W2037322594 @default.
- W2160997581 cites W2040884411 @default.
- W2160997581 cites W2080021732 @default.
- W2160997581 cites W2089213632 @default.
- W2160997581 cites W2095629250 @default.
- W2160997581 cites W2098203240 @default.
- W2160997581 cites W2108626634 @default.
- W2160997581 cites W2123604854 @default.
- W2160997581 cites W2130600071 @default.
- W2160997581 cites W2138356419 @default.
- W2160997581 cites W2141408223 @default.
- W2160997581 cites W2141686968 @default.
- W2160997581 cites W2167467747 @default.
- W2160997581 cites W2171332245 @default.
- W2160997581 cites W2171671120 @default.
- W2160997581 cites W2951911250 @default.
- W2160997581 cites W4230030242 @default.
- W2160997581 cites W4252861488 @default.
- W2160997581 doi "https://doi.org/10.1016/j.ins.2012.02.003" @default.
- W2160997581 hasPublicationYear "2012" @default.
- W2160997581 type Work @default.
- W2160997581 sameAs 2160997581 @default.
- W2160997581 citedByCount "5" @default.
- W2160997581 countsByYear W21609975812013 @default.
- W2160997581 countsByYear W21609975812014 @default.
- W2160997581 countsByYear W21609975812021 @default.
- W2160997581 crossrefType "journal-article" @default.
- W2160997581 hasAuthorship W2160997581A5025550530 @default.
- W2160997581 hasAuthorship W2160997581A5083998049 @default.
- W2160997581 hasBestOaLocation W21609975812 @default.
- W2160997581 hasConcept C124101348 @default.
- W2160997581 hasConcept C140779682 @default.
- W2160997581 hasConcept C41008148 @default.
- W2160997581 hasConcept C76155785 @default.
- W2160997581 hasConcept C94915269 @default.
- W2160997581 hasConceptScore W2160997581C124101348 @default.
- W2160997581 hasConceptScore W2160997581C140779682 @default.
- W2160997581 hasConceptScore W2160997581C41008148 @default.
- W2160997581 hasConceptScore W2160997581C76155785 @default.
- W2160997581 hasConceptScore W2160997581C94915269 @default.
- W2160997581 hasFunder F4320321091 @default.
- W2160997581 hasFunder F4320322025 @default.
- W2160997581 hasFunder F4320323678 @default.
- W2160997581 hasLocation W21609975811 @default.
- W2160997581 hasLocation W21609975812 @default.
- W2160997581 hasOpenAccess W2160997581 @default.
- W2160997581 hasPrimaryLocation W21609975811 @default.
- W2160997581 hasRelatedWork W2125412267 @default.
- W2160997581 hasRelatedWork W2347219288 @default.
- W2160997581 hasRelatedWork W2348097614 @default.
- W2160997581 hasRelatedWork W2354822586 @default.
- W2160997581 hasRelatedWork W2358841807 @default.
- W2160997581 hasRelatedWork W2366221835 @default.
- W2160997581 hasRelatedWork W2385027770 @default.
- W2160997581 hasRelatedWork W2785230770 @default.
- W2160997581 hasRelatedWork W2969723784 @default.
- W2160997581 hasRelatedWork W3149424243 @default.
- W2160997581 hasVolume "196" @default.
- W2160997581 isParatext "false" @default.
- W2160997581 isRetracted "false" @default.
- W2160997581 magId "2160997581" @default.
- W2160997581 workType "article" @default.