Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161010832> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2161010832 abstract "Probabilistic Neural Network (PNN) overcame the shortcomings of entrapment in local optimum, slow convergence rate which was in BP algorithm. With enough training samples, PNN obtained the optimal result of Bayesian rules. Because of the fast training rate, the training samples can be added into PNN at any time. So, PNN is fit to diagnose the fault of power transformer and has auto-adaptability. In order to improve the classification accuracy, the conception of combination is introduced into PNN. The fault diagnosis of power transformer is consisted of 4 Probability neural networks in this paper. PNN1 is used to classify the normal and fault. PNN2 is used to classify the heat fault and partial discharge (PD) fault. PNN3 is used to classify the general overheating fault and severe overheating fault. PNN4 is used to classify the partial discharge fault, and energy sparking or arcing fault. The example shows that the effect of combinatorial PNN is a good classifier in the fault diagnosis of power transformer. The combinatorial PNN has better diagnosis accuracy than BPNN and FUZZY algorithm." @default.
- W2161010832 created "2016-06-24" @default.
- W2161010832 creator A5000361082 @default.
- W2161010832 creator A5020792851 @default.
- W2161010832 creator A5026248762 @default.
- W2161010832 creator A5069251649 @default.
- W2161010832 date "2007-01-01" @default.
- W2161010832 modified "2023-10-17" @default.
- W2161010832 title "Application of Combinatorial Probabilistic Neural Network in Fault Diagnosis of Power Transformer" @default.
- W2161010832 cites W1964168965 @default.
- W2161010832 cites W2811185072 @default.
- W2161010832 doi "https://doi.org/10.1109/icmlc.2007.4370311" @default.
- W2161010832 hasPublicationYear "2007" @default.
- W2161010832 type Work @default.
- W2161010832 sameAs 2161010832 @default.
- W2161010832 citedByCount "11" @default.
- W2161010832 countsByYear W21610108322012 @default.
- W2161010832 countsByYear W21610108322013 @default.
- W2161010832 countsByYear W21610108322019 @default.
- W2161010832 countsByYear W21610108322021 @default.
- W2161010832 crossrefType "proceedings-article" @default.
- W2161010832 hasAuthorship W2161010832A5000361082 @default.
- W2161010832 hasAuthorship W2161010832A5020792851 @default.
- W2161010832 hasAuthorship W2161010832A5026248762 @default.
- W2161010832 hasAuthorship W2161010832A5069251649 @default.
- W2161010832 hasConcept C119599485 @default.
- W2161010832 hasConcept C127313418 @default.
- W2161010832 hasConcept C127413603 @default.
- W2161010832 hasConcept C130143024 @default.
- W2161010832 hasConcept C134342201 @default.
- W2161010832 hasConcept C153180895 @default.
- W2161010832 hasConcept C154945302 @default.
- W2161010832 hasConcept C165205528 @default.
- W2161010832 hasConcept C165801399 @default.
- W2161010832 hasConcept C175202392 @default.
- W2161010832 hasConcept C175551986 @default.
- W2161010832 hasConcept C181335627 @default.
- W2161010832 hasConcept C2778284599 @default.
- W2161010832 hasConcept C41008148 @default.
- W2161010832 hasConcept C49937458 @default.
- W2161010832 hasConcept C50644808 @default.
- W2161010832 hasConcept C58166 @default.
- W2161010832 hasConcept C66322947 @default.
- W2161010832 hasConcept C81818771 @default.
- W2161010832 hasConceptScore W2161010832C119599485 @default.
- W2161010832 hasConceptScore W2161010832C127313418 @default.
- W2161010832 hasConceptScore W2161010832C127413603 @default.
- W2161010832 hasConceptScore W2161010832C130143024 @default.
- W2161010832 hasConceptScore W2161010832C134342201 @default.
- W2161010832 hasConceptScore W2161010832C153180895 @default.
- W2161010832 hasConceptScore W2161010832C154945302 @default.
- W2161010832 hasConceptScore W2161010832C165205528 @default.
- W2161010832 hasConceptScore W2161010832C165801399 @default.
- W2161010832 hasConceptScore W2161010832C175202392 @default.
- W2161010832 hasConceptScore W2161010832C175551986 @default.
- W2161010832 hasConceptScore W2161010832C181335627 @default.
- W2161010832 hasConceptScore W2161010832C2778284599 @default.
- W2161010832 hasConceptScore W2161010832C41008148 @default.
- W2161010832 hasConceptScore W2161010832C49937458 @default.
- W2161010832 hasConceptScore W2161010832C50644808 @default.
- W2161010832 hasConceptScore W2161010832C58166 @default.
- W2161010832 hasConceptScore W2161010832C66322947 @default.
- W2161010832 hasConceptScore W2161010832C81818771 @default.
- W2161010832 hasLocation W21610108321 @default.
- W2161010832 hasOpenAccess W2161010832 @default.
- W2161010832 hasPrimaryLocation W21610108321 @default.
- W2161010832 hasRelatedWork W1975643538 @default.
- W2161010832 hasRelatedWork W2355754418 @default.
- W2161010832 hasRelatedWork W2368647976 @default.
- W2161010832 hasRelatedWork W2373346871 @default.
- W2161010832 hasRelatedWork W2376389960 @default.
- W2161010832 hasRelatedWork W2376682166 @default.
- W2161010832 hasRelatedWork W2381770184 @default.
- W2161010832 hasRelatedWork W2385283308 @default.
- W2161010832 hasRelatedWork W2388637280 @default.
- W2161010832 hasRelatedWork W2510441458 @default.
- W2161010832 isParatext "false" @default.
- W2161010832 isRetracted "false" @default.
- W2161010832 magId "2161010832" @default.
- W2161010832 workType "article" @default.