Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161036742> ?p ?o ?g. }
- W2161036742 endingPage "e561" @default.
- W2161036742 startingPage "e561" @default.
- W2161036742 abstract "Batch effects are responsible for the failure of promising genomic prognostic signatures, major ambiguities in published genomic results, and retractions of widely-publicized findings. Batch effect corrections have been developed to remove these artifacts, but they are designed to be used in population studies. But genomic technologies are beginning to be used in clinical applications where samples are analyzed one at a time for diagnostic, prognostic, and predictive applications. There are currently no batch correction methods that have been developed specifically for prediction. In this paper, we propose an new method called frozen surrogate variable analysis (fSVA) that borrows strength from a training set for individual sample batch correction. We show that fSVA improves prediction accuracy in simulations and in public genomic studies. fSVA is available as part of the sva Bioconductor package." @default.
- W2161036742 created "2016-06-24" @default.
- W2161036742 creator A5012605359 @default.
- W2161036742 creator A5012712411 @default.
- W2161036742 creator A5048253009 @default.
- W2161036742 date "2014-09-23" @default.
- W2161036742 modified "2023-10-02" @default.
- W2161036742 title "Removing batch effects for prediction problems with frozen surrogate variable analysis" @default.
- W2161036742 cites W1824047490 @default.
- W2161036742 cites W1968295800 @default.
- W2161036742 cites W1996731940 @default.
- W2161036742 cites W1999558567 @default.
- W2161036742 cites W2005494216 @default.
- W2161036742 cites W2010400359 @default.
- W2161036742 cites W2020541351 @default.
- W2161036742 cites W2024103316 @default.
- W2161036742 cites W2029276959 @default.
- W2161036742 cites W2030165415 @default.
- W2161036742 cites W2049446938 @default.
- W2161036742 cites W2053478107 @default.
- W2161036742 cites W2096192437 @default.
- W2161036742 cites W2105324757 @default.
- W2161036742 cites W2107665951 @default.
- W2161036742 cites W2116650193 @default.
- W2161036742 cites W2121943403 @default.
- W2161036742 cites W2125419286 @default.
- W2161036742 cites W2130752875 @default.
- W2161036742 cites W2137499573 @default.
- W2161036742 cites W2138550913 @default.
- W2161036742 cites W2150926065 @default.
- W2161036742 cites W2154201415 @default.
- W2161036742 cites W2155484534 @default.
- W2161036742 cites W2156925439 @default.
- W2161036742 cites W2161371306 @default.
- W2161036742 cites W2169353806 @default.
- W2161036742 cites W2952212782 @default.
- W2161036742 cites W4251928238 @default.
- W2161036742 doi "https://doi.org/10.7717/peerj.561" @default.
- W2161036742 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4179553" @default.
- W2161036742 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25332844" @default.
- W2161036742 hasPublicationYear "2014" @default.
- W2161036742 type Work @default.
- W2161036742 sameAs 2161036742 @default.
- W2161036742 citedByCount "50" @default.
- W2161036742 countsByYear W21610367422015 @default.
- W2161036742 countsByYear W21610367422016 @default.
- W2161036742 countsByYear W21610367422017 @default.
- W2161036742 countsByYear W21610367422018 @default.
- W2161036742 countsByYear W21610367422019 @default.
- W2161036742 countsByYear W21610367422020 @default.
- W2161036742 countsByYear W21610367422021 @default.
- W2161036742 countsByYear W21610367422022 @default.
- W2161036742 countsByYear W21610367422023 @default.
- W2161036742 crossrefType "journal-article" @default.
- W2161036742 hasAuthorship W2161036742A5012605359 @default.
- W2161036742 hasAuthorship W2161036742A5012712411 @default.
- W2161036742 hasAuthorship W2161036742A5048253009 @default.
- W2161036742 hasBestOaLocation W21610367421 @default.
- W2161036742 hasConcept C104317684 @default.
- W2161036742 hasConcept C105795698 @default.
- W2161036742 hasConcept C124101348 @default.
- W2161036742 hasConcept C129848803 @default.
- W2161036742 hasConcept C134306372 @default.
- W2161036742 hasConcept C154945302 @default.
- W2161036742 hasConcept C177264268 @default.
- W2161036742 hasConcept C182365436 @default.
- W2161036742 hasConcept C185592680 @default.
- W2161036742 hasConcept C198531522 @default.
- W2161036742 hasConcept C199360897 @default.
- W2161036742 hasConcept C2779694297 @default.
- W2161036742 hasConcept C33923547 @default.
- W2161036742 hasConcept C41008148 @default.
- W2161036742 hasConcept C43617362 @default.
- W2161036742 hasConcept C54355233 @default.
- W2161036742 hasConcept C86803240 @default.
- W2161036742 hasConceptScore W2161036742C104317684 @default.
- W2161036742 hasConceptScore W2161036742C105795698 @default.
- W2161036742 hasConceptScore W2161036742C124101348 @default.
- W2161036742 hasConceptScore W2161036742C129848803 @default.
- W2161036742 hasConceptScore W2161036742C134306372 @default.
- W2161036742 hasConceptScore W2161036742C154945302 @default.
- W2161036742 hasConceptScore W2161036742C177264268 @default.
- W2161036742 hasConceptScore W2161036742C182365436 @default.
- W2161036742 hasConceptScore W2161036742C185592680 @default.
- W2161036742 hasConceptScore W2161036742C198531522 @default.
- W2161036742 hasConceptScore W2161036742C199360897 @default.
- W2161036742 hasConceptScore W2161036742C2779694297 @default.
- W2161036742 hasConceptScore W2161036742C33923547 @default.
- W2161036742 hasConceptScore W2161036742C41008148 @default.
- W2161036742 hasConceptScore W2161036742C43617362 @default.
- W2161036742 hasConceptScore W2161036742C54355233 @default.
- W2161036742 hasConceptScore W2161036742C86803240 @default.
- W2161036742 hasLocation W21610367421 @default.
- W2161036742 hasLocation W21610367422 @default.
- W2161036742 hasLocation W21610367423 @default.
- W2161036742 hasLocation W21610367424 @default.
- W2161036742 hasLocation W21610367425 @default.
- W2161036742 hasLocation W21610367426 @default.