Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161492329> ?p ?o ?g. }
- W2161492329 endingPage "122" @default.
- W2161492329 startingPage "114" @default.
- W2161492329 abstract "Probabilistic life prediction of aircraft turbine disks requires the modeling of multiple complex random phenomena. Through combining test data with technological knowledge available from theoretical analyses and/or previous experimental data, the Bayesian approach gives a more complete estimate and provides a formal updating approach that leads to better results, save time and cost. The present paper aims to develop a Bayesian framework for probabilistic low cycle fatigue (LCF) life prediction and quantify the uncertainty of material properties, total inputs and model uncertainty resulting from choices of different deterministic models in a LCF regime. Further, based on experimental data of turbine disk material (Ni-base superalloy GH4133) tested at various temperatures, the capabilities of the proposed Bayesian framework were verified using four fatigue models (the viscosity-based model, generalized damage parameter, Smith–Watson–Topper (SWT) and plastic strain energy density (PSED)). By updating the input parameters with new data, this Bayesian framework provides more valuable performance information and uncertainty bounds. The results showed that the predicted distributions of fatigue life agree well with the experimental data. Further it was shown that the viscosity-based model and the SWT model yield more satisfactory probabilistic life prediction results for GH4133 under different temperatures than the generalized damage parameter and PSED ones based on the same available knowledge." @default.
- W2161492329 created "2016-06-24" @default.
- W2161492329 creator A5011201862 @default.
- W2161492329 creator A5022335307 @default.
- W2161492329 creator A5029366987 @default.
- W2161492329 creator A5045846415 @default.
- W2161492329 creator A5069596116 @default.
- W2161492329 creator A5076742472 @default.
- W2161492329 date "2013-10-01" @default.
- W2161492329 modified "2023-10-01" @default.
- W2161492329 title "Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys" @default.
- W2161492329 cites W1970360305 @default.
- W2161492329 cites W1970635979 @default.
- W2161492329 cites W1973080475 @default.
- W2161492329 cites W1973323690 @default.
- W2161492329 cites W1985614925 @default.
- W2161492329 cites W1985859516 @default.
- W2161492329 cites W1988332999 @default.
- W2161492329 cites W1992822983 @default.
- W2161492329 cites W2002752150 @default.
- W2161492329 cites W2003166389 @default.
- W2161492329 cites W2003735630 @default.
- W2161492329 cites W2008806998 @default.
- W2161492329 cites W2021986413 @default.
- W2161492329 cites W2029274780 @default.
- W2161492329 cites W2031528522 @default.
- W2161492329 cites W2033816954 @default.
- W2161492329 cites W2043350259 @default.
- W2161492329 cites W2052897245 @default.
- W2161492329 cites W2053429811 @default.
- W2161492329 cites W2062380431 @default.
- W2161492329 cites W2073867851 @default.
- W2161492329 cites W2073874468 @default.
- W2161492329 cites W2080979597 @default.
- W2161492329 cites W2081516932 @default.
- W2161492329 cites W2085704457 @default.
- W2161492329 cites W2093129827 @default.
- W2161492329 cites W2094930911 @default.
- W2161492329 cites W2099134632 @default.
- W2161492329 cites W2114060094 @default.
- W2161492329 cites W2114085869 @default.
- W2161492329 cites W2129789748 @default.
- W2161492329 cites W2138211805 @default.
- W2161492329 cites W2152771541 @default.
- W2161492329 cites W2153026046 @default.
- W2161492329 cites W2169373766 @default.
- W2161492329 cites W2325914378 @default.
- W2161492329 cites W4236898136 @default.
- W2161492329 cites W4255630393 @default.
- W2161492329 doi "https://doi.org/10.1016/j.probengmech.2013.08.004" @default.
- W2161492329 hasPublicationYear "2013" @default.
- W2161492329 type Work @default.
- W2161492329 sameAs 2161492329 @default.
- W2161492329 citedByCount "100" @default.
- W2161492329 countsByYear W21614923292013 @default.
- W2161492329 countsByYear W21614923292014 @default.
- W2161492329 countsByYear W21614923292015 @default.
- W2161492329 countsByYear W21614923292016 @default.
- W2161492329 countsByYear W21614923292017 @default.
- W2161492329 countsByYear W21614923292018 @default.
- W2161492329 countsByYear W21614923292019 @default.
- W2161492329 countsByYear W21614923292020 @default.
- W2161492329 countsByYear W21614923292021 @default.
- W2161492329 countsByYear W21614923292022 @default.
- W2161492329 countsByYear W21614923292023 @default.
- W2161492329 crossrefType "journal-article" @default.
- W2161492329 hasAuthorship W2161492329A5011201862 @default.
- W2161492329 hasAuthorship W2161492329A5022335307 @default.
- W2161492329 hasAuthorship W2161492329A5029366987 @default.
- W2161492329 hasAuthorship W2161492329A5045846415 @default.
- W2161492329 hasAuthorship W2161492329A5069596116 @default.
- W2161492329 hasAuthorship W2161492329A5076742472 @default.
- W2161492329 hasConcept C107673813 @default.
- W2161492329 hasConcept C119857082 @default.
- W2161492329 hasConcept C127413603 @default.
- W2161492329 hasConcept C154945302 @default.
- W2161492329 hasConcept C200601418 @default.
- W2161492329 hasConcept C2778449969 @default.
- W2161492329 hasConcept C2779686264 @default.
- W2161492329 hasConcept C2985278600 @default.
- W2161492329 hasConcept C32230216 @default.
- W2161492329 hasConcept C41008148 @default.
- W2161492329 hasConcept C49937458 @default.
- W2161492329 hasConcept C66938386 @default.
- W2161492329 hasConcept C78519656 @default.
- W2161492329 hasConceptScore W2161492329C107673813 @default.
- W2161492329 hasConceptScore W2161492329C119857082 @default.
- W2161492329 hasConceptScore W2161492329C127413603 @default.
- W2161492329 hasConceptScore W2161492329C154945302 @default.
- W2161492329 hasConceptScore W2161492329C200601418 @default.
- W2161492329 hasConceptScore W2161492329C2778449969 @default.
- W2161492329 hasConceptScore W2161492329C2779686264 @default.
- W2161492329 hasConceptScore W2161492329C2985278600 @default.
- W2161492329 hasConceptScore W2161492329C32230216 @default.
- W2161492329 hasConceptScore W2161492329C41008148 @default.
- W2161492329 hasConceptScore W2161492329C49937458 @default.
- W2161492329 hasConceptScore W2161492329C66938386 @default.
- W2161492329 hasConceptScore W2161492329C78519656 @default.