Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161605596> ?p ?o ?g. }
- W2161605596 endingPage "955" @default.
- W2161605596 startingPage "934" @default.
- W2161605596 abstract "This paper addresses the question of the selection of multivariate generalized autoregressive conditional heteroskedastic (GARCH) models in terms of variance matrix forecasting accuracy, with a particular focus on relatively large-scale problems. We consider 10 assets from the New York Stock Exchange and compare 125 models based 1-, 5- and 20-day-ahead conditional variance forecasts over a period of 10 years using the model confidence set (MCS) and the superior predictive ability (SPA) tests. Model performance is evaluated using four statistical loss functions which account for different types and degrees of asymmetry with respect to over-/under-predictions. When considering the full sample, MCS results are strongly driven by short periods of high market instability during which multivariate GARCH models appear to be inaccurate. Over relatively unstable periods, i.e. the dot-com bubble, the set of superior models is composed of sophisticated specifications such as orthogonal and dynamic conditional correlation (DCC), both with leverage effect in the conditional variances. However, unlike the DCC models, our results show that the orthogonal specifications tend to underestimate the conditional variance. Over calm periods, a simple assumption like constant conditional correlation and symmetry in the conditional variances cannot be rejected. Finally, during the 2007–2008 financial crisis, accounting for non-stationarity in the conditional variance process generates superior forecasts. The SPA test suggests that, independently from the period, the best models do not provide significantly better forecasts than the DCC model of Engle (2002, Journal of Business and Economic Statistics 20: 339–350) with leverage in the conditional variances of the returns. Copyright © 2011 John Wiley & Sons, Ltd." @default.
- W2161605596 created "2016-06-24" @default.
- W2161605596 creator A5056310140 @default.
- W2161605596 creator A5076785744 @default.
- W2161605596 creator A5077287445 @default.
- W2161605596 date "2011-04-26" @default.
- W2161605596 modified "2023-10-17" @default.
- W2161605596 title "On the forecasting accuracy of multivariate GARCH models" @default.
- W2161605596 cites W1576527543 @default.
- W2161605596 cites W1727659491 @default.
- W2161605596 cites W1967238670 @default.
- W2161605596 cites W1969960895 @default.
- W2161605596 cites W1977480757 @default.
- W2161605596 cites W1979575715 @default.
- W2161605596 cites W1991102458 @default.
- W2161605596 cites W1998968611 @default.
- W2161605596 cites W1999814123 @default.
- W2161605596 cites W1999996900 @default.
- W2161605596 cites W2001806364 @default.
- W2161605596 cites W2004976304 @default.
- W2161605596 cites W2005424182 @default.
- W2161605596 cites W2006875428 @default.
- W2161605596 cites W2018364810 @default.
- W2161605596 cites W2023240121 @default.
- W2161605596 cites W2041402087 @default.
- W2161605596 cites W2050902901 @default.
- W2161605596 cites W2051235503 @default.
- W2161605596 cites W2063593194 @default.
- W2161605596 cites W2079898209 @default.
- W2161605596 cites W2089540673 @default.
- W2161605596 cites W2091536878 @default.
- W2161605596 cites W2096645669 @default.
- W2161605596 cites W2103448947 @default.
- W2161605596 cites W2112088236 @default.
- W2161605596 cites W2117178635 @default.
- W2161605596 cites W2118856114 @default.
- W2161605596 cites W2120576179 @default.
- W2161605596 cites W2128569377 @default.
- W2161605596 cites W2135606128 @default.
- W2161605596 cites W2146134639 @default.
- W2161605596 cites W2155804346 @default.
- W2161605596 cites W2155902841 @default.
- W2161605596 cites W2158977591 @default.
- W2161605596 cites W2170813608 @default.
- W2161605596 cites W3021318637 @default.
- W2161605596 cites W3021739894 @default.
- W2161605596 cites W3095114851 @default.
- W2161605596 cites W3100009876 @default.
- W2161605596 cites W3114379428 @default.
- W2161605596 cites W3121364726 @default.
- W2161605596 cites W3121640353 @default.
- W2161605596 cites W3122175640 @default.
- W2161605596 cites W3122188145 @default.
- W2161605596 cites W3122281927 @default.
- W2161605596 cites W3122351404 @default.
- W2161605596 cites W3123985237 @default.
- W2161605596 cites W3124206866 @default.
- W2161605596 cites W3124347368 @default.
- W2161605596 cites W3124690764 @default.
- W2161605596 cites W3125564657 @default.
- W2161605596 cites W3125665000 @default.
- W2161605596 cites W4244792406 @default.
- W2161605596 cites W4250628534 @default.
- W2161605596 doi "https://doi.org/10.1002/jae.1248" @default.
- W2161605596 hasPublicationYear "2011" @default.
- W2161605596 type Work @default.
- W2161605596 sameAs 2161605596 @default.
- W2161605596 citedByCount "174" @default.
- W2161605596 countsByYear W21616055962012 @default.
- W2161605596 countsByYear W21616055962013 @default.
- W2161605596 countsByYear W21616055962014 @default.
- W2161605596 countsByYear W21616055962015 @default.
- W2161605596 countsByYear W21616055962016 @default.
- W2161605596 countsByYear W21616055962017 @default.
- W2161605596 countsByYear W21616055962018 @default.
- W2161605596 countsByYear W21616055962019 @default.
- W2161605596 countsByYear W21616055962020 @default.
- W2161605596 countsByYear W21616055962021 @default.
- W2161605596 countsByYear W21616055962022 @default.
- W2161605596 countsByYear W21616055962023 @default.
- W2161605596 crossrefType "journal-article" @default.
- W2161605596 hasAuthorship W2161605596A5056310140 @default.
- W2161605596 hasAuthorship W2161605596A5076785744 @default.
- W2161605596 hasAuthorship W2161605596A5077287445 @default.
- W2161605596 hasBestOaLocation W21616055962 @default.
- W2161605596 hasConcept C101104100 @default.
- W2161605596 hasConcept C105795698 @default.
- W2161605596 hasConcept C149782125 @default.
- W2161605596 hasConcept C153083717 @default.
- W2161605596 hasConcept C159877910 @default.
- W2161605596 hasConcept C161584116 @default.
- W2161605596 hasConcept C21430997 @default.
- W2161605596 hasConcept C23922673 @default.
- W2161605596 hasConcept C33923547 @default.
- W2161605596 hasConcept C91602232 @default.
- W2161605596 hasConceptScore W2161605596C101104100 @default.
- W2161605596 hasConceptScore W2161605596C105795698 @default.
- W2161605596 hasConceptScore W2161605596C149782125 @default.