Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161633460> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2161633460 abstract "It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov chain Monte-Carlo methods, it is demonstrated that it is possible to infer the unbiased regression over the noiseless input." @default.
- W2161633460 created "2016-06-24" @default.
- W2161633460 creator A5065539069 @default.
- W2161633460 date "2002-11-27" @default.
- W2161633460 modified "2023-09-26" @default.
- W2161633460 title "Neural network regression with input uncertainty" @default.
- W2161633460 cites W1567512734 @default.
- W2161633460 cites W1992448135 @default.
- W2161633460 cites W2049579036 @default.
- W2161633460 cites W2056760934 @default.
- W2161633460 cites W2100206501 @default.
- W2161633460 cites W2111051539 @default.
- W2161633460 cites W2911546748 @default.
- W2161633460 doi "https://doi.org/10.1109/nnsp.1998.710658" @default.
- W2161633460 hasPublicationYear "2002" @default.
- W2161633460 type Work @default.
- W2161633460 sameAs 2161633460 @default.
- W2161633460 citedByCount "4" @default.
- W2161633460 countsByYear W21616334602013 @default.
- W2161633460 countsByYear W21616334602020 @default.
- W2161633460 crossrefType "proceedings-article" @default.
- W2161633460 hasAuthorship W2161633460A5065539069 @default.
- W2161633460 hasBestOaLocation W21616334602 @default.
- W2161633460 hasConcept C107673813 @default.
- W2161633460 hasConcept C111350023 @default.
- W2161633460 hasConcept C11413529 @default.
- W2161633460 hasConcept C115961682 @default.
- W2161633460 hasConcept C154945302 @default.
- W2161633460 hasConcept C160234255 @default.
- W2161633460 hasConcept C37903108 @default.
- W2161633460 hasConcept C41008148 @default.
- W2161633460 hasConcept C50644808 @default.
- W2161633460 hasConcept C99498987 @default.
- W2161633460 hasConceptScore W2161633460C107673813 @default.
- W2161633460 hasConceptScore W2161633460C111350023 @default.
- W2161633460 hasConceptScore W2161633460C11413529 @default.
- W2161633460 hasConceptScore W2161633460C115961682 @default.
- W2161633460 hasConceptScore W2161633460C154945302 @default.
- W2161633460 hasConceptScore W2161633460C160234255 @default.
- W2161633460 hasConceptScore W2161633460C37903108 @default.
- W2161633460 hasConceptScore W2161633460C41008148 @default.
- W2161633460 hasConceptScore W2161633460C50644808 @default.
- W2161633460 hasConceptScore W2161633460C99498987 @default.
- W2161633460 hasLocation W21616334601 @default.
- W2161633460 hasLocation W21616334602 @default.
- W2161633460 hasLocation W21616334603 @default.
- W2161633460 hasOpenAccess W2161633460 @default.
- W2161633460 hasPrimaryLocation W21616334601 @default.
- W2161633460 hasRelatedWork W1511054869 @default.
- W2161633460 hasRelatedWork W1548070431 @default.
- W2161633460 hasRelatedWork W1993276801 @default.
- W2161633460 hasRelatedWork W2045551876 @default.
- W2161633460 hasRelatedWork W2092296771 @default.
- W2161633460 hasRelatedWork W2160296521 @default.
- W2161633460 hasRelatedWork W2162457363 @default.
- W2161633460 hasRelatedWork W2753587999 @default.
- W2161633460 hasRelatedWork W3117628444 @default.
- W2161633460 hasRelatedWork W4285268524 @default.
- W2161633460 isParatext "false" @default.
- W2161633460 isRetracted "false" @default.
- W2161633460 magId "2161633460" @default.
- W2161633460 workType "article" @default.