Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161680865> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2161680865 endingPage "363" @default.
- W2161680865 startingPage "355" @default.
- W2161680865 abstract "The rational development of new drugs is a complex and expensive process. A myriad of factors affect the activity of putative candidate molecules in vivo and the propensity for causing adverse and toxic effects is recognised as the major hurdle behind the current “target-rich, lead-poor” scenario.Structure-Activity Relationship studies, using relationalMachine Learning algorithms, proved already to be very useful in the complex process of rational drug design. However, a typical problem with those studies concerns the use of available repositories of previously studied molecules. It is quite often the case that those repositories are highly biased since they contain lots of molecules that are similar to each other. This results from the common practice where an expert chemist starts off with a lead molecule, presumed to have some potential, and then introduces small modifications to produce a set of similar molecules. Thus, the resulting sets have a kind of similarity bias.In this paper we assess the advantages of filtering out similar molecules in order to improve the application of relational learners in Structure-Activity Relationship (SAR) problems to predict toxicity. Furthermore, we also assess the advantage of using a relational learner to construct comprehensible models that may be quite valuable to bring insights into the workings of toxicity.KeywordsHydrogen Bond DonorInductive Logic ProgrammingRelational LearnerSimilar MoleculeToxic MoleculeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W2161680865 created "2016-06-24" @default.
- W2161680865 creator A5003291220 @default.
- W2161680865 creator A5020623807 @default.
- W2161680865 creator A5054960351 @default.
- W2161680865 creator A5059093687 @default.
- W2161680865 creator A5072912942 @default.
- W2161680865 creator A5088910380 @default.
- W2161680865 date "2011-01-01" @default.
- W2161680865 modified "2023-09-25" @default.
- W2161680865 title "Assessing the Effect of 2D Fingerprint Filtering on ILP-Based Structure-Activity Relationships Toxicity Studies in Drug Design" @default.
- W2161680865 cites W1564885879 @default.
- W2161680865 cites W1864375288 @default.
- W2161680865 cites W1977287658 @default.
- W2161680865 cites W1977340881 @default.
- W2161680865 cites W2038617772 @default.
- W2161680865 cites W2046626674 @default.
- W2161680865 cites W2049961577 @default.
- W2161680865 cites W2110899053 @default.
- W2161680865 cites W2127109972 @default.
- W2161680865 cites W2146248261 @default.
- W2161680865 cites W2199930758 @default.
- W2161680865 cites W3175318380 @default.
- W2161680865 doi "https://doi.org/10.1007/978-3-642-19914-1_46" @default.
- W2161680865 hasPublicationYear "2011" @default.
- W2161680865 type Work @default.
- W2161680865 sameAs 2161680865 @default.
- W2161680865 citedByCount "0" @default.
- W2161680865 crossrefType "book-chapter" @default.
- W2161680865 hasAuthorship W2161680865A5003291220 @default.
- W2161680865 hasAuthorship W2161680865A5020623807 @default.
- W2161680865 hasAuthorship W2161680865A5054960351 @default.
- W2161680865 hasAuthorship W2161680865A5059093687 @default.
- W2161680865 hasAuthorship W2161680865A5072912942 @default.
- W2161680865 hasAuthorship W2161680865A5088910380 @default.
- W2161680865 hasConcept C112930515 @default.
- W2161680865 hasConcept C126322002 @default.
- W2161680865 hasConcept C151730666 @default.
- W2161680865 hasConcept C2777093003 @default.
- W2161680865 hasConcept C2777826928 @default.
- W2161680865 hasConcept C2780035454 @default.
- W2161680865 hasConcept C29730261 @default.
- W2161680865 hasConcept C38652104 @default.
- W2161680865 hasConcept C41008148 @default.
- W2161680865 hasConcept C64903051 @default.
- W2161680865 hasConcept C70721500 @default.
- W2161680865 hasConcept C71924100 @default.
- W2161680865 hasConcept C86803240 @default.
- W2161680865 hasConcept C98274493 @default.
- W2161680865 hasConceptScore W2161680865C112930515 @default.
- W2161680865 hasConceptScore W2161680865C126322002 @default.
- W2161680865 hasConceptScore W2161680865C151730666 @default.
- W2161680865 hasConceptScore W2161680865C2777093003 @default.
- W2161680865 hasConceptScore W2161680865C2777826928 @default.
- W2161680865 hasConceptScore W2161680865C2780035454 @default.
- W2161680865 hasConceptScore W2161680865C29730261 @default.
- W2161680865 hasConceptScore W2161680865C38652104 @default.
- W2161680865 hasConceptScore W2161680865C41008148 @default.
- W2161680865 hasConceptScore W2161680865C64903051 @default.
- W2161680865 hasConceptScore W2161680865C70721500 @default.
- W2161680865 hasConceptScore W2161680865C71924100 @default.
- W2161680865 hasConceptScore W2161680865C86803240 @default.
- W2161680865 hasConceptScore W2161680865C98274493 @default.
- W2161680865 hasLocation W21616808651 @default.
- W2161680865 hasOpenAccess W2161680865 @default.
- W2161680865 hasPrimaryLocation W21616808651 @default.
- W2161680865 hasRelatedWork W2008261434 @default.
- W2161680865 hasRelatedWork W2172300414 @default.
- W2161680865 isParatext "false" @default.
- W2161680865 isRetracted "false" @default.
- W2161680865 magId "2161680865" @default.
- W2161680865 workType "book-chapter" @default.