Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161796284> ?p ?o ?g. }
- W2161796284 endingPage "572" @default.
- W2161796284 startingPage "554" @default.
- W2161796284 abstract "Mean motion resonances are a common feature of both our own Solar system and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semimajor axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first- and second-order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle’s eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities, although for certain migration rates, capture probability peaks at a finite eccentricity. More massive planets can capture particles at higher eccentricities and migration rates. We also calculate libration amplitudes and the offset of the libration centres for captured particles, and the change in eccentricity if capture does not occur. Libration amplitudes are higher for larger initial eccentricity. The model allows for a complete description of a particle’s behaviour as it successively encounters several resonances. Data files containing the integration grid output will be available online. We discuss implications for several scenarios: (i) Planet migration through gas discs trapping other planets or planetesimals in resonances: we find that, with classical prescriptions for Type I migration, capture into second-order resonances is not possible, and lower mass planets or those further from the star should trap objects in first-order resonances closer to the planet than higher mass planets or those closer to the star. For fast enough migration, a planet can trap no objects into its resonances. We suggest that the present libration amplitude of planets may be a signature of their eccentricities at the epoch of capture, with high libration amplitudes suggesting high eccentricity (e.g. HD 128311). (ii) Planet migration through a debris disc: we find the resulting dynamical structure depends strongly both on migration rate and on planetesimal eccentricity. Translating this to spatial structure, we expect clumpiness to decrease from a significant level at e ≲ 0.01 to non-existent at e ≳ 0.1. (iii) Dust migration through Poynting–Robertson (PR) drag: we predict that Mars should have its own resonant ring of particles captured from the zodiacal cloud, and that the capture probability is ≲25 per cent that of the Earth, consistent with published upper limits for its resonant ring. To summarize, the Hamiltonian model will allow quick interpretation of the resonant properties of extrasolar planets and Kuiper Belt Objects, and will allow synthetic images of debris disc structures to be quickly generated, which will be useful for predicting and interpreting disc images made with Atacama Large Millimeter Array (ALMA), Darwin/Terrestrial Planet Finder (TPF) or similar missions." @default.
- W2161796284 created "2016-06-24" @default.
- W2161796284 creator A5018451831 @default.
- W2161796284 creator A5070106612 @default.
- W2161796284 date "2011-03-07" @default.
- W2161796284 modified "2023-10-17" @default.
- W2161796284 title "A general model of resonance capture in planetary systems: first- and second-order resonances" @default.
- W2161796284 cites W1976394574 @default.
- W2161796284 cites W1978032832 @default.
- W2161796284 cites W1979399384 @default.
- W2161796284 cites W1980867975 @default.
- W2161796284 cites W1983479182 @default.
- W2161796284 cites W1992538587 @default.
- W2161796284 cites W1992637546 @default.
- W2161796284 cites W1993800544 @default.
- W2161796284 cites W1995582648 @default.
- W2161796284 cites W1997828263 @default.
- W2161796284 cites W2003076688 @default.
- W2161796284 cites W2006607748 @default.
- W2161796284 cites W2007527030 @default.
- W2161796284 cites W2012432220 @default.
- W2161796284 cites W2014239858 @default.
- W2161796284 cites W2025510941 @default.
- W2161796284 cites W2026220426 @default.
- W2161796284 cites W2027135516 @default.
- W2161796284 cites W2030954306 @default.
- W2161796284 cites W2044302728 @default.
- W2161796284 cites W2045623809 @default.
- W2161796284 cites W2049721436 @default.
- W2161796284 cites W2056077503 @default.
- W2161796284 cites W2057575312 @default.
- W2161796284 cites W2061284991 @default.
- W2161796284 cites W2065584453 @default.
- W2161796284 cites W2068433364 @default.
- W2161796284 cites W2069874220 @default.
- W2161796284 cites W2073085171 @default.
- W2161796284 cites W2090335942 @default.
- W2161796284 cites W2092504316 @default.
- W2161796284 cites W2093586159 @default.
- W2161796284 cites W2111721471 @default.
- W2161796284 cites W2120585843 @default.
- W2161796284 cites W2122534172 @default.
- W2161796284 cites W2130473623 @default.
- W2161796284 cites W2136139132 @default.
- W2161796284 cites W2137557395 @default.
- W2161796284 cites W2142175002 @default.
- W2161796284 cites W2144804653 @default.
- W2161796284 cites W2148093507 @default.
- W2161796284 cites W2156255672 @default.
- W2161796284 cites W2164944591 @default.
- W2161796284 cites W3098135227 @default.
- W2161796284 cites W3098297217 @default.
- W2161796284 cites W3098348576 @default.
- W2161796284 cites W3099852627 @default.
- W2161796284 cites W3101131646 @default.
- W2161796284 cites W3101951015 @default.
- W2161796284 cites W3102900636 @default.
- W2161796284 cites W3103065483 @default.
- W2161796284 cites W3103071898 @default.
- W2161796284 doi "https://doi.org/10.1111/j.1365-2966.2011.18201.x" @default.
- W2161796284 hasPublicationYear "2011" @default.
- W2161796284 type Work @default.
- W2161796284 sameAs 2161796284 @default.
- W2161796284 citedByCount "84" @default.
- W2161796284 countsByYear W21617962842012 @default.
- W2161796284 countsByYear W21617962842013 @default.
- W2161796284 countsByYear W21617962842014 @default.
- W2161796284 countsByYear W21617962842015 @default.
- W2161796284 countsByYear W21617962842017 @default.
- W2161796284 countsByYear W21617962842018 @default.
- W2161796284 countsByYear W21617962842019 @default.
- W2161796284 countsByYear W21617962842020 @default.
- W2161796284 countsByYear W21617962842021 @default.
- W2161796284 countsByYear W21617962842022 @default.
- W2161796284 countsByYear W21617962842023 @default.
- W2161796284 crossrefType "journal-article" @default.
- W2161796284 hasAuthorship W2161796284A5018451831 @default.
- W2161796284 hasAuthorship W2161796284A5070106612 @default.
- W2161796284 hasBestOaLocation W21617962841 @default.
- W2161796284 hasConcept C100905312 @default.
- W2161796284 hasConcept C121332964 @default.
- W2161796284 hasConcept C139210041 @default.
- W2161796284 hasConcept C17744445 @default.
- W2161796284 hasConcept C180205008 @default.
- W2161796284 hasConcept C190538878 @default.
- W2161796284 hasConcept C199539241 @default.
- W2161796284 hasConcept C2524010 @default.
- W2161796284 hasConcept C27638517 @default.
- W2161796284 hasConcept C2780118271 @default.
- W2161796284 hasConcept C2780909310 @default.
- W2161796284 hasConcept C28719098 @default.
- W2161796284 hasConcept C33923547 @default.
- W2161796284 hasConcept C44870925 @default.
- W2161796284 hasConcept C51244244 @default.
- W2161796284 hasConcept C539450922 @default.
- W2161796284 hasConcept C62520636 @default.
- W2161796284 hasConcept C66279824 @default.
- W2161796284 hasConcept C74650414 @default.