Matches in SemOpenAlex for { <https://semopenalex.org/work/W2161873281> ?p ?o ?g. }
- W2161873281 abstract "Background Catheter-related bloodstream infections (CRBSIs) and catheter-related thrombosis (CRT) are common complications of central venous catheters (CVC), which are used to monitor patient health and deliver medications. CVCs are subject to protein adsorption and platelet adhesion as well as colonization by the natural skin flora (i.e. Staphylococcus aureus and Staphylococcus epidermidis). Antimicrobial and antithrombotic drugs can prevent infections and thrombosis-related complications, but have associated resistance and safety risks. Surface topographies have shown promise in limiting platelet and bacterial adhesion, so it was hypothesized that an engineered Sharklet micropattern, inspired by shark-skin, may provide a combined approach as it has wide reaching anti-fouling capabilities. To assess the feasibility for this micropattern to improve CVC-related healthcare outcomes, bacterial colonization and platelet interactions were analyzed in vitro on a material common for vascular access devices. Methods To evaluate bacterial inhibition after simulated vascular exposure, micropatterned thermoplastic polyurethane surfaces were preconditioned with blood proteins in vitro then subjected to a bacterial challenge for 1 and 18 h. Platelet adhesion was assessed with fluorescent microscopy after incubation of the surfaces with platelet-rich plasma (PRP) supplemented with calcium. Platelet activation was further assessed by monitoring fibrin formation with fluorescent microscopy after exposure of the surfaces to platelet-rich plasma (PRP) supplemented with calcium in a flow-cell. Results are reported as percent reductions and significance is based on t-tests and ANOVA models of log reductions. All experiments were replicated at least three times. Results Blood and serum conditioned micropatterned surfaces reduced 18 h S. aureus and S. epidermidis colonization by 70% (p ≤ 0.05) and 71% (p < 0.01), respectively, when compared to preconditioned unpatterned controls. Additionally, platelet adhesion and fibrin sheath formation were reduced by 86% and 80% (p < 0.05), respectively, on the micropattern, when compared to controls. Conclusions The Sharklet micropattern, in a CVC-relevant thermoplastic polyurethane, significantly reduced bacterial colonization and relevant platelet interactions after simulated vascular exposure. These results suggest that the incorporation of the Sharklet micropattern on the surface of a CVC may inhibit the initial events that lead to CRBSI and CRT." @default.
- W2161873281 created "2016-06-24" @default.
- W2161873281 creator A5003869450 @default.
- W2161873281 creator A5020754014 @default.
- W2161873281 creator A5041101472 @default.
- W2161873281 creator A5048881547 @default.
- W2161873281 creator A5049757672 @default.
- W2161873281 creator A5063690163 @default.
- W2161873281 creator A5075204818 @default.
- W2161873281 creator A5076122211 @default.
- W2161873281 date "2015-02-26" @default.
- W2161873281 modified "2023-09-23" @default.
- W2161873281 title "An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters" @default.
- W2161873281 cites W1530030940 @default.
- W2161873281 cites W1551941799 @default.
- W2161873281 cites W1606920746 @default.
- W2161873281 cites W1833589815 @default.
- W2161873281 cites W1968407035 @default.
- W2161873281 cites W1969836429 @default.
- W2161873281 cites W1972081276 @default.
- W2161873281 cites W1972862300 @default.
- W2161873281 cites W1985038773 @default.
- W2161873281 cites W1990700307 @default.
- W2161873281 cites W1993374702 @default.
- W2161873281 cites W1995056718 @default.
- W2161873281 cites W1999269180 @default.
- W2161873281 cites W2003174386 @default.
- W2161873281 cites W2009965340 @default.
- W2161873281 cites W2021623392 @default.
- W2161873281 cites W2023493622 @default.
- W2161873281 cites W2025934004 @default.
- W2161873281 cites W2026511177 @default.
- W2161873281 cites W2028812334 @default.
- W2161873281 cites W2030490295 @default.
- W2161873281 cites W2034652153 @default.
- W2161873281 cites W2035444569 @default.
- W2161873281 cites W2038898817 @default.
- W2161873281 cites W2043823281 @default.
- W2161873281 cites W2044149751 @default.
- W2161873281 cites W2046033766 @default.
- W2161873281 cites W2053101050 @default.
- W2161873281 cites W2059389037 @default.
- W2161873281 cites W2064837586 @default.
- W2161873281 cites W2065929158 @default.
- W2161873281 cites W2068298719 @default.
- W2161873281 cites W2069689127 @default.
- W2161873281 cites W2070983493 @default.
- W2161873281 cites W2072615829 @default.
- W2161873281 cites W2077898578 @default.
- W2161873281 cites W2078136541 @default.
- W2161873281 cites W2078687955 @default.
- W2161873281 cites W2088875727 @default.
- W2161873281 cites W2096911353 @default.
- W2161873281 cites W2098407265 @default.
- W2161873281 cites W2100090498 @default.
- W2161873281 cites W2104944704 @default.
- W2161873281 cites W2114014930 @default.
- W2161873281 cites W2115338330 @default.
- W2161873281 cites W2120092553 @default.
- W2161873281 cites W2127665463 @default.
- W2161873281 cites W2130577876 @default.
- W2161873281 cites W2139936875 @default.
- W2161873281 cites W2150875643 @default.
- W2161873281 cites W2151046640 @default.
- W2161873281 cites W2158168664 @default.
- W2161873281 cites W2160659623 @default.
- W2161873281 cites W2170963650 @default.
- W2161873281 cites W2306241614 @default.
- W2161873281 cites W2318312633 @default.
- W2161873281 cites W2326151961 @default.
- W2161873281 cites W2326938783 @default.
- W2161873281 cites W2333284029 @default.
- W2161873281 cites W2335798377 @default.
- W2161873281 cites W2625320817 @default.
- W2161873281 cites W3023804638 @default.
- W2161873281 cites W4236260088 @default.
- W2161873281 cites W4242082035 @default.
- W2161873281 doi "https://doi.org/10.1186/s40169-015-0050-9" @default.
- W2161873281 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4385044" @default.
- W2161873281 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25852825" @default.
- W2161873281 hasPublicationYear "2015" @default.
- W2161873281 type Work @default.
- W2161873281 sameAs 2161873281 @default.
- W2161873281 citedByCount "61" @default.
- W2161873281 countsByYear W21618732812015 @default.
- W2161873281 countsByYear W21618732812016 @default.
- W2161873281 countsByYear W21618732812017 @default.
- W2161873281 countsByYear W21618732812018 @default.
- W2161873281 countsByYear W21618732812019 @default.
- W2161873281 countsByYear W21618732812020 @default.
- W2161873281 countsByYear W21618732812021 @default.
- W2161873281 countsByYear W21618732812022 @default.
- W2161873281 countsByYear W21618732812023 @default.
- W2161873281 crossrefType "journal-article" @default.
- W2161873281 hasAuthorship W2161873281A5003869450 @default.
- W2161873281 hasAuthorship W2161873281A5020754014 @default.
- W2161873281 hasAuthorship W2161873281A5041101472 @default.
- W2161873281 hasAuthorship W2161873281A5048881547 @default.
- W2161873281 hasAuthorship W2161873281A5049757672 @default.
- W2161873281 hasAuthorship W2161873281A5063690163 @default.